Где используется лента мебиуса. Лента мебиуса - удивительное открытие


Лента Мёбиуса и её сюрпризы

Немецкий математик и астроном-теоретикАвгуст Фердинанд Мёбиус (1790-1868) - ученик великого Гаусса, известный геометр, профессор Лейпцигского университета, директор обсерватории. Долгие годы преподавания, долгие годы работы – обычная жизнь профессора.

И вот надо же, это случилось под конец жизни! Пришла удивительная идея … это был самое значительное событие в его жизни! К сожалению, он так и не успел оценить значимость своего изобретения. Статья о знаменитой ленте Мебиуса была опубликована посмертно.

Существуют две легенды открытия односторонней поверхности.

По первой легенде, знаменитую ленту Мебиуса изобрел вовсе не самАвгуст Фердинанд Мебиус, немецкий астроном и математик, а его горничная, которая в силу невезения неправильно прострочила воротничок рубашки ученого, таким образом войдя в историю. По второй легенде, открыть свой "лист" Мёбиусу помогла служанка, сшившая однажды неправильно концы ленты. Ну, что же, может быть, может быть! Ведь Исаак Ньютон тоже тянул с открытием всемирного закона тяготения, пока ему на голову не свалилось яблоко.

Как же называют ленту Мебиуса (иначе лист Мебиуса или петлю Мебиуса) математики?

На языке математики – это топологический объект, простейшая односторонняя поверхностьс краем в обычном трёхмерном Евклидовом пространстве, где можно попасть из одной точки этой поверхности в любую другую, не пересекая края.

Достаточно сложное определение!

Поэтому удобнее просто рассмотреть ленту Мебиуса поближе. Берем бумажную полоску, перекручиваем полоску в пол-оборота поперек (на 180 градусов) и склеиваем концы.

В другой раз "мама бы по головке за такую работу не погладила"! Но, на этот раз вы правы! Она должна быть перекрученным кольцом.

Ставим в каком-нибудь месте на полоске точку фломастером. А теперь прочерчиваем вдоль всей нашей ленты линию, пока вам не встретится вновь ваша точка. Вам нигде не пришлось переходить через край – это и называется односторонней поверхностью.

Посмотрите, как интересно проходит прочерченная вами линия: она то внутри кольца, то снаружи! А теперь измерьте длину этой линии - от точки до точки.
Удивляетесь?
Она оказывается в два раза длиннее первоначальной полоски бумаги!

Так и должно быть, ведь у вас в руках лента Мебиуса! А у ленты Мебиуса есть только одна сторона, и мы опять скажем – это односторонняя поверхность с краем.

А если по этой черте заставить ползти, не сворачивая, муравья, то вы получите копию картины художника Мориса Эшера.
Бедный муравей на бесконечной дороге !

А можно сделать две немного разные ленты Мебиуса: у одной перекручивать перед склейкой полоску по часовой стрелке, а у другой – против часовой стрелки. Так различаются правая и левая ленты Мебиуса.

А теперь интересные сюрпризы с лентой Мебиуса:

1. Разрежьте ленту Мебиуса вкруговую по центральной линии. Не бойтесь, она не развалится на две части! Лента развернется в длинную замкнутую ленту, закрученную вдвое больше, чем первоначальная. Почему лента Мебиуса при таком разрезе не распадается на отдельные части?
Разрез не касался края ленты, поэтому после разреза край (а значит и вся полоска бумаги) останется целым куском.

2. Полученную после первого опыта ленту Мебиуса (закрученную вдвое больше, чем первоначальная, т.е. на 360 градусов) вновь разрежьте по ее центральной линии.

Что получится?

У вас в руках окажутся теперь две одинаковые, но сцепленные между собой ленты Мебиуса.

3. Сделайте новую ленту Мебиуса, но перед склейкой поверните ее не один раз, а три раза (не на 180 градусов, а на 540). Затем разрежьте ее вдоль центральной линии.

Что получилось?
У вас должна получиться замкнутая лента, завитая в узел трилистника, т.е. в простой узел с тремя самопересечениями.

4. Если вы сделаете ленту Мебиуса с еще большим числом полуоборотов перед склейкой, то получатся неожиданные и удивительные фигуры, называемые парадромными кольцами.

5. Если разрезать ленту Мебиуса, не посередине, а отступая от края приблизительно на треть её ширины, то получатся две сцепленные ленты, одна - более короткая лента Мебиуса, и другая - длинная лента Мебиуса с двумя полуоборотами.

Посмотрите, как это можно сделать на практике:

Близкой к ленте Мебиуса односторонней поверхностью является бутылка Клейна.
Интересно, что бутылка Клейна может быть получена путём склеивания двух лент Мебиуса по краям. Однако, в обычном трёхмерном евклидовом пространстве сделать это, не создавая самопересечения, невозможно.

Есть еще один интересный объект, связанный с лентой Мебиуса. Это резистор Мебиуса.

В истории нередко бывают случаи, когда одна идея приходит в головы одновременно нескольким изобретателям. Так случилось и с лентой Мебиуса. В том же 1858 году идея ленты пришла и к другому ученому -Иоганну Листингу . Он дал название науке, изучающей непрерывность, -топология . А первенство в открытии топологического объекта – ленты досталось Августу Мебиусу.

Мы незаметно встречаем ленту Мебиуса в разных устройствах: это и красящие ленты в матричных принтерах, и ременные передачи, шлифовальные устройства, ленточные конвееры и многие другие. В этом случае срок службы изделия увеличивается, т.к. уменьшается изнашиваемость. А в системах непрерывной записи применение ленты Мебиуса позволяет вдвое увеличить время записи на одну пленку.

Таинственная лента Мебиуса всегда будоражила умы писателей, художников и скульпторов.
Рисунок ленты Мебиуса используется в графике. Вспомните, например, эмблему знаменитой серии научно-популярных книг "Библиотечка "Квант" или международный символ переработки.

Александр Пославский

Артемий Бабий

Это небольшой очерк о малоизвестных сюрпризах, которые встречаются при изучении геометрии ленты Мёбиуса.

В литературе встречается несколько названий: проективная плоскость, односторонняя поверхность, лента Мёбиуса, петля Мёбиуса, кольцо Мёбиуса. По укоренившейся у меня привычке в дальнейшем я буду называть предмет нашего изучения кольцом Мёбиуса.

Коротко об общеизвестных сюрпризах кольца Мёбиуса . Это необходимо для понимания того, о чем будет рассказано далее.

  • Если разрезать кольцо Мёбиуса вдоль по средней линии, то в итоге получится кольцо с двойным полуоборотом. Такое кольцо называют *Афганской лентой* и оно является уже двусхторонней поверхностью с двумя краями (кромками).
  • Если разрезать кольцо Мёбиуса вдоль края, отступив на 1/3 его ширины, то в итоге получатся два кольца разных размеров: меньшее - кольцо Мёбиуса ( односторонняя поверхность) и большее - *Афганская лента * (двусторонняя поверхность). Эти кольца сцеплены друг с другом.

А сейчас о новых сюрпризах. Они малоизвестны для широкой публики. А самые любознательные читатели могут повторить нижеописанные опыты. Автор очерка не являеется профессиональным математиком-топологом, всё придумал самостоятельно, без посторонней помощи. Поэтому результаты опытов и идеи, высказанные в этом очерке, предлагаются для обсуждения с его автором.

Сюрприз №1

Сначала я попробовал склеить кольцо Мёбиуса не из одной, а из двух полосок бумаги, предварительно уложив их в стопку (Фото 1). Получилось нечто похожее на настоящее кольцо Мёбиуса (Фото2):

Почему “нечто похожее”? Потому что, когда я растянул это кольцо, оказалось, что в результате склейки получилась “ (Фото 3).

И в чем тут сюрприз? А в том, что при растягивании исходного кольца, не нарушалась его целостность. Это значит, что достаточно просто складывается в обратном порядке в исходное кольцо (псевдокольцо) Мёбиуса (Фото 4).

Сейчас время вспомнить, что “афганская лента” получается при разрезании настоящего кольца Мёбиуса по средней линии. Так вот, полученная при разрезании, так же просто складывается в псевдокольцо Мёбиуса . Т.е., разрезав кольцо Мёбиуса (далее - кМ ) по средней линии и получив “афганскую ленту” (а.л.” ) , можно уже полученную а.л. собрать в псевдокольцо Мёбиуса (далее - ПкМ ). Вы можете просто склеить “а.л.” и сложить ее в ПкМ . Проверено на практике.

Сюрприз №2

Этот сюрприз является продолжением сюрприза 1 . Я склеил уже три бумажные полоски по форме кМ , предварительно уложив их в стопку (Фото 5 и 6).

Получился некий “бутерброд” в форме кМ (Фото 7) . Если растянуть этот “бутерброд” , то он разложится на два кольца: меньшее - это кМ и большее - это “а.л.” , сцепленные друг с другом (Фото 8).

Но такой же результат получается при разрезании кМ по 1 / 3 его ширины! Как и в первом случае, эти два кольца возможно собрать в первоначальное состояние “бутерброда” . Сначала “а.л.” укладывается в ПкМ (Фото 9) , а затем кМ помещается в середину ПкМ (Фото 10). Проверено на практике.

Удивительно, но, разрезав уже “бутерброд” по 1 / 3 ширины, можно собрать новый, более сложный “бутерброд” . Теоретически такое деление “бутербродов” и их собирание можно продолжать... ну очень много раз. В итоге получится многослойный “бутерброд” , состоящий из многих слоёв “афганских лент” и одного кольца Мёбиус а , расположенного в середине “бутерброда” .

Для более образного представления многослойного (бутербродного) строения псевдокольца Мёбиуса предлагаю два рисунка из серии “математики шутят”:

На примере “бутерброда” (Фото 7,10) можно легко и зримо понять ещё одно свойство односторонней поверхности (проективной плоскости): нельзя создать две , параллельные друг к другу, однносторонние поверхности (во всяком случае в нашем трёхмерном, эвклидовом, пространстве). Одна из них обязательно получится двухсторонней.

Здесь я сделаю небольшое отступление. В Интернете я встретил описание эксперимента с кольцом Мёбиуса . Выглядел он так: на полимерную плёнку в форме кМ наносился металлический слой. Над полученным образцом проводились различные действия, считая что проводятся опыты над кМ . Строго говоря, опыты проводились над вышеописанным “бутербродом” , где рабочий металлический слой являлся “афганской лентой” , а кольцом Мёбиуса была несущая полимерная плёнка.

Возвращаясь к теме, хочу заметить, что я тоже хотел поэкспериментировать с кМ . Но меня не устраивала несовершенная форма кМ , полученная из прямоугольных полосок. Эта “прямоугольная” конструкция имеет, как минимум, три зоны деформации, которые четко проявляются при уплощении кМ . Поэтому я посчитал, что кМ , собранные на основе S-образных полосок, более технологичны в работе(Фото 11 и 12).

Чтобы получить кМ изS- образной полоски достаточно состыковать концы полоски и склеить их. Причем, в зависимости от того в какую сторону вы будете перегибать полоску, будет получаться лево- или правозакрученный вариант кМ . Так же просто получается и вышеописанный “бутерброд” : делается стопка из 3 S -образных полосок, сводятся их концы и поочередно склеиваются.

Опыты с разрезанием кольца Мёбиуса и собиранием “бутербродов” с этим вариантом более наглядны и сборка получается очень легко.

“Бутерброд” , полученный из трех полосок может послужить моделью для создания конденсатора в форме кМ . Только надо понимать, что в начале необходимо создать кМ из металлической фольги (внутренняя пластина-электрод), а уже на него наносить слои диэлектрика и металлической плёнки (внешняя пластина-электрод). Хотя здесь возможны варианты не с кМ , а с ПкМ и это потребует несколько иного подхода.

Я не знаю, будет ли такая конструкция конденсатора иметь преимущества перед традиционной, но считаю, что она будет интересна для тех, кто занимается торсионными полями. Почему? Это уже тема для дискуссии с автором очерка.

Сюрприз №3

Продолжим. Несмотря на полученный результат, у меня осталась неудовлетворенность несовершенством формы полученного таким способом кМ . Размышляя над этой проблемой, я вспомнил, что кМ относится к торовым поверхностям. Так как у меня с пространственным воображением напряг и мне необходимо всё увидеть глазами и потрогать руками, то я взял кольцо Мёбиуса и оклеил его бумажными кольцами. Получилась вот такая конструкция (Фото 13).

И где здесь обещанный сюрприз? Рассматривая полученный “тор” , я открыл (заостряю - для себя; возможно всё выше- и нижеописанное давно известно читателям этого опуса), что кольцо Мёбиуса не делит внутренний объём тора на две изолированные друг от друга полости. Другими словами: из любой точки, находящейся внутри тора со встроенным в него кМ , можно попасть в любую другую точку внутри, не пересекая плоскость кМ и поверхность тора.

Для наглядности представим себе тор в виде спасательного резинового круга внутри которого находится перегородка в виде кМ . Давление воздуха внутри круга с перегородкой в форме кМ будет распределятся равномерно по всему объёму независимо от того, где будет располагаться ниппель. Кстати, фото 13 очень наглядно моделирует форму магнитного поля вокруг продольной катушки Мёбиуса .

Теоретически принцип построения идеального торового кольца Мёби уса достаточно прост, но практическое исполнение модели торового кМ сопряжено с определёнными техническими трудностями.

Для практического изготовления торовых кМ более всего подходит распечатка на 3-D принтере.

Итак, сюрпризы продолжаются

Сейчас наступило время поговорить о таком замечательном геометрическом теле как ТОР.

Как образуется открытый ТОР ? Правильно, открытый ТОР образуется при вращении торообразующей окружности вокруг оси, находящейся вне этой окружности и имеет вот такой вид (Фото14).

Еще различают пиковый ТОР . Это когда большая ось вращения является касательной к торообразующей окружности. По-простому - бублик без дырки. А также закрытый (осевой) ТОР , когда ось вращения пересекает торообразующую окружность. Хороший пример - округлое яблоко.

Для того, чтобы получить кМ в ТОР е, обозначим в торообразующем круге диаметр (два радиус-вектора). А сейчас заставим торообразующий круг вращаться не только вокруг внешней оси, а одновременно и вокруг внутренней оси ТОР а. За полный оборот вокруг внешней оси круг должен одновременно повернуться на полоборота вокруг внутренней оси. Тогда диаметр (два радиус-вектора) опишет плоскость в виде кМ (Фото 15) .

Но это кМ получено в воображаемом опыте. А как же получить его в реале, не имея в наличии 3-D принтер? Вы можете придумать свой способ, отличный от моего. Я же поступил следующим образом. На поверхности открытого ТОР а (из детской пирамидки) нарисовал траекторию движения радиус-векторов (Фото 16) . Затем взял латунную проволоку, аккуратно обогнул её вокруг ТОР а по этой траектории и получил две половинки края (кромки) торового кМ (Фото 17).

Затем соединил их с помощью двух трубочек, а пространство между ветками полученной петли заполнил отрезками изоленты (Фото 18 и 19).

Кольцо Мёбиуса в ТОР е можно получить и с помощью одного радиус-вектора. При этом он должен одновременно сделать два оборота вокруг внешней оси и полный оборот вокруг внутренней оси. И здесь становятся понятными две вещи: первое - кМ имеет ось симметрии (или среднюю линию) и второе - почему, если разрезать кМ по средней линии, получается кольцо с двойным полуоборотом (*Афг aнская лента* ). Просто представьте себе, что нарисует единичный радиус-вектор при первом обороте вокруг внешней оси, и что при втором.

Внимательный читатель, склеивая кМ и затем разрезая его по средней линии, мог заметить что при этом ножницы совершают один оборот. Если же резать кМ по 1 / 3 ширины, то ножницы совершают уже два оборота.

КМ сохраняет свойства односторонней поверхности и при большем количестве полуоборотов. Главное условие - количество полуоборотов должно быть нечетным.

Такой лист Мёбиуса или кольцо Мёбиуса , как кому нравится, я назвал двухвекторным. Зачем? А затем, что такое кольцо строится двумя радиус-векторами. Ну и что? А то, что...

Сюрприз №4

В торе можна создавать трёх-, четырёх-, ...,N -векторные кольца Мёбиуса . Взгляните на Фото 20. Оно иллюстрирует принцип создания трехвекторного кольца Мёбиуса.

В торообразующей окружности показаны три радиус-вектора - А, В, С . Вращая эту окружность вокруг внешней оси и одновременно закручивая её вокруг внутренней так, чтобы при завершении оборота вектор А состыковался с вектором В (соотвтственно вектор В к С , а С к А ), радиус-векторы опишут (создадут) одностороннюю поверхность в виде трехвекторного (трёхлепесткового) кольца Мёбиуса .

Это универсальный метод получения N-векторных односторонних поверхностей и они будут обладать всеми свойствами обычного кМ.

При таком подходе к построению торовых кМ особое значение приобретает средняя линия (по другому - линия сопряжения). В этом случае линия сопряжения совпадает с внутренней осью тора. Если, к примеру, 3-хвекторный кМ расшить по линии сопряжения, то мы получим вариант “афганской ленты” в тройной петле:

Трёхвекторное кМ , созданное по даной схеме, можно обозначить в виде дроби 1 / 3 , где в знаменателе указывается число векторов, а сама дробь указывает на какой угол закручиваестся каждый вектор при полном обороте.

Я назвал эту дробь индексом км . Например, если я буду говорить о кМ с индексом км = 1 / 4, то это означает, что речь идёт о четырёхвекторном кМ с закрутом в 1 / 4 оборота (умножив на 360 0 , получим результат в градусах) или в 90 0 . Индекс км ,выраженный в градусах - это базовый угол закрута. При этом надо помнить, что индекс км не может принимать значение целого числа .

Приняв во внимание, что кМ может закручиваться по левому или правому винту, я обозначил левый винт знаком ”-“ , а правый винт - знаком “+” . Тогда полная запись индекса км будет выглядеть на примере так: индекс км = + 1 / 4 . Значит речь будет идти о четырехвекторном кМ с закрутом в 1 / 4 оборота(базовый угол закрута - 90 0 ) и правым винтом.

Индекс км становится очень информативным показателем, помогающим достаточно быстро разобраться в огромном семействе многовекторных кМ и их различных сочетаниях.

Я не ставил перед собой задачу описывать и систематизировать всё многообразие семейства торовых кМ и их взаимосочетаний. Остановлюсь только на нескольких осбенностях, которые необходимо учитывать при конструировании девайсов с геометрией кМ .

1. Если индекс км имеет общее кратное для числителя и знаменателя, то при моделировании получается система из нескольких взаимопересекающихся кМ (от 2-х и более). Рассмотрим примеры 6 -тивекторного построения.

Индекс км =+ 2 / 6 , где общее кратное для данной дроби равно 2 . Это означает, что при моделировании получится система из 2-х трехвекторных кМ с базовым углом закрута в 120 0 :

Индекс км =+ 3 / 6 , где общее кратное равно 3 . При моделировании получается система из 3-х двухвекторных кМ с базовым углом в 180 0 :

2. Если индекс км имеет вид 1 / 4 , 1 / 6 , 1 / 8 … 1 / 2 N или 3 / 4 , 5 / 4 , 5 / 6 , 7 / 6 … 2 N±1 / 2N (где N - любое натуральное число, начиная с числа 2 ), то при моделировании получается самопересекающееся кольцо Мёбиуса - от однократного самопересечения до многократного. При этом односторонность такого кМ сохраняется в любом случае. Приведу несколько примеров, подтверждающих данное утверждение:

Вот он - автор удивительной ленты Мебиуса!
Немецкий математик и астроном-теоретик Август Фердинанд Мёбиус (1790-1868) - ученик великого Гаусса, известный геометр, профессор Лейпцигского университета, директор обсерватории. Долгие годы преподавания, долгие годы работы - обычная жизнь профессора.

И вот надо же, это случилось под конец жизни! Пришла удивительная идея … это был самое значительное событие в его жизни! К сожалению, он так и не успел оценить значимость своего изобретения. Статья о знаменитой ленте Мебиуса была опубликована посмертно.

Как же называют ленту Мебиуса (иначе лист Мебиуса или петлю Мебиуса) математики?

На языке математики - это топологический объект , простейшая односторонняя поверхность с краем в обычном трёхмерном Евклидовом пространстве, где можно попасть из одной точки этой поверхности в любую другую, не пересекая края.
Достаточно сложное определение!

Поэтому удобнее просто рассмотреть ленту Мебиуса поближе. Берем бумажную полоску, перекручиваем полоску в пол-оборота поперек (на 180 градусов) и склеиваем концы.

В другой раз «мама бы по головке за такую работу не погладила»! Но, на этот раз вы правы! Она должна быть перекрученным кольцом.

Ставим в каком-нибудь месте на полоске точку фломастером. А теперь прочерчиваем вдоль всей нашей ленты линию, пока вам не встретится вновь ваша точка. Вам нигде не пришлось переходить через край - это и называется односторонней поверхностью.

Посмотрите, как интересно проходит прочерченная вами линия: она то внутри кольца, то снаружи! А теперь измерьте длину этой линии - от точки до точки.
Удивляетесь?
Она оказывается в два раза длиннее первоначальной полоски бумаги!

Так и должно быть, ведь у вас в руках лента Мебиуса! А у ленты Мебиуса есть только одна сторона, и мы опять скажем - это односторонняя поверхность с краем.

А если по этой черте заставить ползти, не сворачивая, муравья, то вы получите копию картины художника Мориса Эшера.
Бедный муравей на бесконечной дороге

А можно сделать две немного разные ленты Мебиуса: у одной перекручивать перед склейкой полоску по часовой стрелке, а у другой - против часовой стрелки. Так различаются правая и левая ленты Мебиуса.

А теперь интересные сюрпризы с лентой Мебиуса:

1. Разрежьте ленту Мебиусавкруговую по центральной линии. Не бойтесь, она не развалится на две части! Лента развернется в длинную замкнутую ленту, закрученную вдвое больше, чем первоначальная. Почему лента Мебиуса при таком разрезе не распадается на отдельные части?
Разрез не касался края ленты, поэтому после разреза край (а значит и вся полоска бумаги) останется целым куском.

2. Полученную после первого опыта ленту Мебиуса (закрученную вдвое больше, чем первоначальная, т.е. на 360 градусов) вновь разрежьте по ее центральной линии.
Что получится?
У вас в руках окажутся теперь две одинаковые, но сцепленные между собой ленты Мебиуса.

3. Сделайте новую ленту Мебиуса, но перед склейкой поверните ее не один раз, а три раза (не на 180 градусов, а на 540). Затем разрежьте ее вдоль центральной линии.

Что получилось?
У вас должна получиться замкнутая лента, завитая в узел трилистника , т.е. в простой узел с тремя самопересечениями.

4. Если вы сделаете ленту Мебиуса с еще большим числом полуоборотов перед склейкой, то получатся неожиданные и удивительные фигуры, называемые парадромными кольцами .

5. Если разрезать ленту Мебиуса, не посередине, а отступая от края приблизительно на треть её ширины, то получатся две сцепленные ленты, одна — более короткая лента Мебиуса, и другая — длинная лента Мебиуса с двумя полуоборотами.

Посмотрите, как это можно сделать на практике:

Близкой к ленте Мебиуса односторонней поверхностью является бутылка Клейна.
Интересно, что бутылка Клейна может быть получена путём склеивания двух лент Мебиуса по краям. Однако, в обычном трёхмерном евклидовом пространстве сделать это, не создавая самопересечения, невозможно.

Есть еще один интересный объект, связанный с лентой Мебиуса. Это резистор Мебиуса.

В истории нередко бывают случаи, когда одна идея приходит в головы одновременно нескольким изобретателям. Так случилось и с лентой Мебиуса. В том же 1858 году идея ленты пришла и к другому ученому - Иоганну Листингу . Он дал название науке, изучающей непрерывность, — топология . А первенство в открытии топологического объекта - ленты досталось Августу Мебиусу.

Мы незаметно встречаем ленту Мебиуса в разных устройствах: это и красящие ленты в матричных принтерах,и ременные передачи, шлифовальные устройства, ленточные конвееры и многие другие. В этом случае срок службы изделия увеличивается, т.к. уменьшается изнашиваемость. А в системах непрерывной записи применение ленты Мебиуса позволяет вдвое увеличить время записи на одну пленку.

Таинственная лента Мебиуса всегда будоражила умы писателей, художников и скульпторов.
Рисунок ленты Мебиуса используется в графике.Вспомните, например, эмблему знаменитой серии научно-популярных книг «Библиотечка „Квант“» или международный символ переработки

Существуют научные знания и явления, которые привносят в обыденность нашей жизни тайну и загадку.

Лента Мебиуса относится к ним в полной мере. Современная математика замечательно описывает при помощи формул все ее свойства и особенности. А вот обычные люди, слабо разбирающиеся в топонимике и других геометрических премудростях, практически ежедневно сталкиваются с предметами, изготовленными по ее образу и подобию, даже не подозревая об этом.

Что это такое?

Лента Мебиуса, которую также называют петлей, поверхностью или листом, - это объект изучения такой математической дисциплины, как топология, исследующей общие свойства фигур, сохраняющихся при таких непрерывных преобразованиях, как скручивание, растяжение, сжатие, изгибание и других, не связанных с нарушением целостности. Удивительной и неповторимой особенностью такой ленты является то, что он имеет всего одну сторону и край и никак не связаны с ее расположением в пространстве. Лист Мебиуса является топологическим, то есть непрерывным объектом с простейшей односторонней поверхностью с границей в обычном Евклидовом пространстве (3-мерном), где возможно из одной точки такой поверхности, не пересекая края, попасть в любую другую.

Кто и когда ее открыл?

Такой непростой объект, как лента Мебиуса, был и открыт довольно необычно. Прежде всего отметим, что два математика, абсолютно не связанные между собой в исследованиях, открыли ее одновременно - в 1858 году. Еще одним интересным фактом является то, что оба этих ученых в разное время являлись учениками одного и того же великого математика — Иоганна Карла Фридриха Гаусса. Так, вплоть до 1858 года считалось, что любая поверхность обязана иметь две стороны. Однако Иоганн Бенедикт Листинг и Август Фердинанд Мебиус открыли геометрический объект, у которого была всего одна сторона, и описывают его свойства. Лента была названа в честь Мебиуса, а вот отцом-основателем «резиновой геометрии» топологи считают Листинга и его труд «Предварительные исследования по топологии».

Свойства

Ленте Мебиуса присущи следующие свойства, не меняющиеся при ее сжимании, разрезании вдоль или сминании:

1. Наличие одной стороны. А. Мебиус в своем труде «Об объеме многогранников» описал геометрическую поверхность, названную затем в его честь, обладающую всего одной стороной. Проверить это довольно просто: берем ленту или лист Мебиуса и стараемся закрасить внутреннюю сторону одним цветом, а внешнюю - другим. Не суть важно, в каком месте и направлении было начато окрашивание, вся фигура будет закрашена одним цветом.

2. Непрерывность выражается в том, что любую точку этой геометрической фигуры можно соединить с любой другой ее точкой, не пересекая границы поверхности Мебиуса.

3. Связность, или двухмерность, заключается в том, что при разрезании ленты вдоль, из нее не получится несколько разных фигур, и она остается цельной.

4. В ней отсутствует такое важное свойство, как ориентированность. Это значит, что человек, идущий по этой фигуре, вернется к началу своего пути, но только в зеркальном отражении самого себя. Таким образом, бесконечная лента Мебиуса может привести к вечному путешествию.

5. Особый хроматический номер, показывающий, какое максимально возможное число областей на поверхности Мебиуса, можно создать так, чтобы у любой из них была общая граница со всеми другими. Лента Мебиуса имеет хроматический номер - 6, а вот кольцо из бумаги - 5.

Научное использование

Сегодня лист Мебиуса и его свойства широко применяются в науке, служа основой для построения новых гипотез и теорий, проведения исследований и экспериментов, создания новых механизмов и устройств.

Так, существует гипотеза, согласно которой Вселенная — это огромнейшая петля Мебиуса. Косвенно об этом свидетельствует и теория относительности Эйнштейна, согласно которой даже полетевший прямо корабль может вернуться в ту же временную и пространственную точку, откуда стартовал.

Другая теория рассматривает ДНК как часть поверхности Мебиуса, что объясняет сложности с прочтением и расшифровкой генетического кода. Кроме всего прочего, такая структура дает логичное объяснение биологической смерти - замкнутая на самой себе спираль приводит к самоуничтожению объекта.

По мнению физиков, многие оптические законы основываются на свойствах листа Мебиуса. Так, например, зеркальное отражение - это особый перенос во времени и человек видит перед собой своего зеркального двойника.

Реализация на практике

В различных отраслях промышленности лента Мебиуса применение нашла уже давно. Великий изобретатель Никола Тесла в начале века изобрел резистор Мебиуса, состоящий из двух скрученных на 180 0 проводящих поверхностей, который может противостоять потоку электрического тока без создания электромагнитных помех.

На основе исследований поверхности ленты Мебиуса и ее свойств было создано множество устройств и приборов. Ее форму повторяют при создании полосы ленточного конвейера и красящей ленты в печатных устройствах, абразивных ремней для заточки инструментов и автоматической передачи. Это позволяет значительно увеличить срок их службы, так как изнашивание происходит более равномерно.

Не так давно удивительные особенности листа Мебиуса позволили создать пружину, которая, в отличие от обычных, срабатывающих в противоположном направлении, не меняет направление срабатывания. Применяется она в стабилизаторе рулевого привода штурвала, обеспечивая возврат рулевого колеса в исходное положение.

Кроме того, знак лента Мебиуса используется в разнообразных торговых марках и логотипах. Самый известный из них - это международный символ вторичной переработки. Его проставляют на упаковках товаров либо пригодных для последующей переработки, либо сделанных из переработанных ресурсов.

Источник творческого вдохновения

Лента Мебиуса и ее свойства легли в основу творчества многих художников, писателей, скульпторов и кинематографистов. Самый известный художник, использовавший в таких своих работах, как «Лента Мебиуса II (Красные муравьи)», «Всадники» и «Узлы», ленту и ее особенности — Мауриц Корнелис Эшер.

Листы Мебиуса, или, как их еще называют, поверхности минимальной энергии, стали источником вдохновения для математических художников и скульпторов, например, Брента Коллинза или Макса Билла. Самый известный памятник ленте Мебиуса установлен у входа в вашингтонский Музей истории и техники.

Русские художники также не остались в стороне от этой темы и создали свои работы. Скульптуры «Лента Мебиуса» установлены в Москве и Екатеринбурге.

Литература и топология

Необычные свойства поверхностей Мебиуса вдохновили многих писателей на создание фантастических и сюрреалистических произведений. Петля Мебиуса играет важную роль в романе Р. Желязны «Двери в песке» и служит как средство перемещения сквозь пространство и время для главного героя романа «Некроскоп» Б. Ламли.

Фигурирует она и в рассказах «Стена темноты» Артура Кларка, «На ленте Мебиуса» М. Клифтона и «Лист Мебиус» А. Дж. Дейча. По мотивам последнего режиссером Густаво Москера был снята фантастическая кинокартина «Мебиус».

Делаем сами, своими руками!

Если вас заинтересовала лента Мебиуса, как сделать ее модель, вам подскажет небольшая инструкция:

1. Для изготовления ее модели потребуются:

Лист обычной бумаги;

Ножницы;

Линейка.

2. Отрезаем полосу от листа бумаги так, чтобы ее ширина была в 5-6 раз меньше длины.

3. Полученную бумажную полоску раскладываем на ровной поверхности. Один конец придерживаем рукой, а другой поворачиваем на 180 0 так, чтобы полоса перекрутилась и изнанка стала лицевой стороной.

4. Склеиваем концы перекрученной полосы так, как показано на рисунке.

Лента Мебиуса готова.

5. Возьмите ручку или маркер и посередине ленты начните рисовать дорожку. Если вы сделали все правильно, то вернетесь в ту же точку, откуда начали чертить линию.

Для того чтобы получить наглядное подтверждение тому, что лента Мебиуса - односторонний объект, карандашом или ручкой попробуйте закрасить какую-либо ее сторону. Через некоторое время вы увидите, что закрасили ее полностью.

Мы обратили внимание на то, что в нашем блоге достаточное количество вопросов посвящено теме маркировки упаковки в части указания сведений о возможности утилизации. В техническом регламенте Таможенного союза «О безопасности упаковки» для этих целей используется петля Мебиуса. При этом в самом документе не приводится подробных указаний о том, что собой представляет такой символ. Именно поэтому мы решили немного подробнее познакомиться с петлей Мебиуса.

Для понимания сути петли Мебиуса обратимся за толкованием к мировой практике.

Согласно международным нормам, символ петли (ленты) Мебиуса используется только в случаях подтверждения соответствия экологическим требованиям. Такой знак относится к экологической маркировке. Знак может применяться только в качестве информирования о том, что материал (или его часть) продукции является повторно переработанным или, наоборот, применяемые материалы могут быть вторично использованы после утилизации. Нанесение петли Мебиуса без соответствующих доказательств по международным нормам недопустимо.

Для справки: петля Мебиуса относится к символам экологической маркировки по типу II. Этот тип не требует получения отдельных документов о соответствии заданным нормам безопасности, ответственность за соблюдение требований ложится на самого производителя.

Общепринятым изображением петли Мебиуса является «широкий» вариант символа, который регламентирован формой к знаку № 1135 ИСО 7000. Именно такое исполнение применяется для информирования о переработки продукции.

Также символическое изображение петли Мебиуса получило распространение и применяется для обозначения вида полимера. При этом в петле Мебиуса проставляется цифровое и буквенное обозначение пластика, которого насчитывается шесть основных разновидностей:

Возможно, в будущем узкие стрелки в виде петли Мебиуса при маркировке полимерных материалов могут быть заменены равносторонним треугольником. С такой инициативой выступил Международный комитет по полимерам американского общества по испытанию материалов (ASTM). За основу предложения принят тот факт, что использование стрелок в виде ленты Мебиуса применяется, прежде всего, в контексте вторичной переработки, и ставит на второй план основную цель данной системы маркировки - отображение состава продукции.

Остановимся немного подробнее на самих требованиях к маркировке петлей Мебиуса: обратимся к тексту российского стандарта ГОСТ Р ИСО 14021-2000 «Этикетки и декларации экологические. Самодекларируемые экологические заявления (Экологическая маркировка по типу II)».

В подпункте 5.10.1 о специальных знаках приведены основные положения о петле Мебиуса. Исходя из текста стандарта, следует, что такой символ должен быть использован только для заявлений о рециклированном или рециклируемом содержимом.

Для справки: в случае рециклированного содержания речь идет о доле уже переработанного материала в продукции; рециклируемое содержание говорит о возможности дальнейшей переработки. В первом случае обязательно указывается массовая доля материала, который был переработан. Для рециклируемого содержимого петля Мебиуса наносится без дополнительных цифровых изображений.

В заключении хочется отметить практический опыт нанесения петли Мебиуса: в российской системе у производителей/продавцов нет единого подхода к маркировке знаком об утилизации. В обращение поступают товары с различными интерпретациями петли Мебиуса. Такое разнообразие связано с тем, что в нашем законодательстве нет единого документа, в котором были бы четко прописаны правила применения петли Мебиуса.

Выбор редакции
1 стакан чечевицы свежие грибы (белые или шампиньоны) - 300 гр. лук-репка - 1 шт. морковь -1 шт. 4 клубня картофеля растительное...

Творожная диета для похудения представляет собой быстрый (в отношении продолжительности), легкий (в отношении рациона питания), полезный...

Рецепт быстрого приготовления спагетти по-итальянски с чесноком, красным перцем и оливковым маслом. Все о пользе классических макарон...

Сон о лавине снега предвещает наступление рискованной ситуации, в которой вы можете оказаться по собственной вине. Любое необдуманное...
Символ тяжелого труда, трудной дороги. По наличию мозолей на руках определяли, что человек из крестьян, из рабочей среды. Сбитые в кровь...
Сторонники запрета на гадание приводят следующие доводы: Просмотр вероятностей развития событий может нарушить равновесие в сторону срыва...
Алкогольные коктейли, в том числе и «Ром Кола», являются в своем роде произведениями искусства. Их назначение заключается в формировании...
В этой статье о сливовом вине будет, пожалуй, больше теории, чем практики, но, во-первых, чтоб отлично проходили практические занятия по...
Печь хлеб, который олицетворяет в народном сознании самое насущное, означает укрепление благосостояния. Насколько человек разбогатеет,...