Какая доза радиации опасна для человека. Получаемая человеком доза облучения при рентгене


Рентгенологическим видам обследования в медицине по-прежнему отводится ведущая роль. Иногда без данных невозможно подтвердить или поставить правильный диагноз. С каждым годом методики и рентгенотехника совершенствуются, усложняются, становятся более безопасными но, тем не менее, вред от излучения остается. Минимизация негативного влияния диагностического облучения – приоритетная задача рентгенологии.

Наша задача – на доступном любому человеку уровне разобраться в существующих цифрах доз излучения, единицах их измерения и точности. Также, коснемся темы реальности возможных проблем со здоровьем, которые может вызвать этот вид медицинской диагностики.

Рекомендуем прочитать:

Что такое рентгеновское излучение

Рентгеновское излучение представляет собой поток электромагнитных волн с длиной, находящейся в диапазоне между ультрафиолетовым и гамма-излучением. Каждый вид волн имеет свое специфическое влияние на организм человека.

По своей сути рентгеновское излучение является ионизирующим. Оно обладает высокой проникающей способностью. Энергия его представляет опасность для человека. Вредность излучения тем выше, чем больше получаемая доза.

О вреде воздействия рентгеновского излучения на организм человека

Проходя через ткани тела человека, рентгеновские лучи ионизирует их, изменяя структуру молекул, атомов, простым языком – «заряжая» их. Последствия полученного облучения могут проявиться в виде заболеваний у самого человека (соматические осложнения), или у его потомства (генетические болезни).

Каждый орган и ткань по-разному подвержены влиянию излучения. Поэтому созданы коэффициенты радиационного риска, ознакомиться с которыми можно на картинке. Чем больше значение коэффициента, тем выше восприимчивость ткани к действию радиации, а значит и опасность получения осложнения.

Наиболее подвержены воздействию радиации кроветворные органы – красный костный мозг.

Самое частое осложнение, появляющееся в ответ на облучение, – патологии крови.

У человека возникают:

  • обратимые изменения состава крови после незначительных величин облучения;
  • лейкемия – уменьшение количества лейкоцитов и изменение их структуры, приводящая к сбоям деятельности организма, его уязвимости, снижению иммунитета;
  • тромбоцитопения – уменьшение содержания тромбоцитов, клеток крови, отвечающих за свертываемость. Этот патологический процесс может вызывать кровотечения. Состояние усугубляется повреждением стенок сосудов;
  • гемолитические необратимые изменения в составе крови (распад эритроцитов и гемоглобина), в результате воздействия мощных доз радиации;
  • эритроцитопения – снижение содержания эритроцитов (красных кровяных клеток), вызывающее процесс гипоксии (кислородного голодания) в тканях.

Друг ие патологи и :

  • развитие злокачественных заболеваний;
  • преждевременное старение;
  • повреждение хрусталика глаза с развитием катаракты.

Важно : Опасным рентгеновское излучение становится в случае интенсивности и длительности воздействия. Медицинская аппаратура применяет низкоэнергетическое облучение малой длительности, поэтому при применении считается относительно безвредной, даже если обследование приходится повторять многократно.

Однократное облучение, которое получает пациент при обычной рентгенографии, повышает риск развития злокачественного процесса в будущем примерно на 0,001%.

Обратите внимание : в отличие от воздействия радиоактивных веществ, вредоносное действие лучей прекращается сразу же, после выключения аппарата.

Лучи не могут накапливаться и образовывать радиоактивные вещества, которые затем будут являться самостоятельными источниками излучения. Поэтому после рентгена не следует принимать никаких мер для «вывода» радиации из организма.

В каких единицах измеряются дозы полученной радиации

Человеку, далекому от медицины и рентгенологии, тяжело разобраться в обилии специфической терминологии, цифрах доз и единицах, в которых они измеряются. Попробуем привести информацию к понятному минимуму.

Итак, в чем же измеряется доза рентгеновского излучения? Единиц измерения радиации много. Мы не будет подробно разбирать все. Беккерель, кюри, рад, грэй, бэр – вот список основных величин радиации. Применяются они в разных системах измерения и областях радиологии. Остановимся только на практически значимых в рентгендиагностике.

Нас больше будут интересовать рентген и зиверт.

Характеристика уровня проникающей радиации, излучаемой рентгеновским аппаратом, измеряется в единице под названием «рентген» (Р).

Чтобы оценить действие радиации на человека, введено понятие эквивалентной поглощенной дозы (ЭПД). Помимо ЭПД существуют и другие виды доз – все они представлены в таблице.

Эквивалентная поглощенная доза (на картинке – Эффективная эквивалентная доза) представляет собой количественную величину энергии, которую поглощает организм, но при этом учитывается биологическая реакция тканей тела на излучение. Измеряется она в зивертах (Зв).

Зиверт приблизительно сопоставим с величиной 100 рентген.

Естественный фон облучения и дозы, выдаваемые медицинской рентгенаппаратурой, намного ниже этих значений, поэтому для их измерения используются величины тысячной доли (милли) или одной миллионной доли (микро) Зиверта и Рентгена.

В цифрах это выглядит так:

  • 1 зиверт (Зв) = 1000 миллизиверт (мЗв) = 1000000 микрозиверт (мкЗв)
  • 1 рентген (Р) = 1000 миллирентген (мР) = 1000000 миллирентген (мкР)

Чтобы оценить количественную часть излучения, получаемого за единицу времени (час, минуту, секунду) используют понятие – мощность дозы, измеряемую в Зв/ч (зиверт-час), мкзв/ч (микрозиверт-ч), Р/ч (рентген-час), мкр/ч (микрорентген-час). Аналогично – в минутах и секундах.

Можно еще проще:

  • общее излучение измеряется в рентгенах;
  • доза, получаемая человеком – в зивертах.

Дозы облучения, полученные в зивертах, накапливаются в течение всей жизни. Теперь попробуем выяснить, сколько же получает человек этих самых зивертов.

Естественный радиационный фон

Уровень естественной радиации везде свой, зависит он от следующих факторов:

  • высоты над уровнем моря (чем выше, тем жестче фон);
  • геологической структуры местности (почва, вода, горные породы);
  • внешних причин – материала здания, наличия рядом предприятий, дающих дополнительную лучевую нагрузку.

Обратите внимание: наиболее приемлемым считается фон, при котором уровень радиации не превышает 0,2 мкЗв/ч (микрозиверт-час), или 20 мкР/ч (микрорентген-час)

Верхней границей нормы считается величина до 0,5 мкЗв/ч = 50 мкР/ч.

В течение нескольких часов облучения допускается доза до 10 мкЗв/ч = 1мР/ч.

Все виды рентгенологических исследований вписываются в безопасные нормативы лучевых нагрузок, измеряемых в мЗв (миллизивертах).

Допустимые дозы облучения для человека, накопленные за жизнь не должны выходить за пределы 100-700 мЗв. Фактические значения облучения людей, проживающих в высокогорье, могут быть выше.

В среднем за год человек получает дозу равную 2-3 мЗв.

Она суммируется из следующих составляющих:

  • радиация солнца и космических излучений: 0,3 мЗв – 0,9 мЗв;
  • почвенно-ландшафтный фон: 0,25 – 0,6 мЗв;
  • излучение жилищных материалов и строений: 0,3 мЗв и выше;
  • воздух: 0,2 – 2 мЗв;
  • пища: от 0,02 мЗв;
  • вода: от 0,01 – 0,1 мЗв:

Помимо внешней получаемой дозы радиации, в организме человека накапливаются и собственные отложения радионуклидных соединений. Они также представляют источник ионизирующих излучений. К примеру, в костях этот уровень может достигать значений от 0,1 до 0,5 мЗв.


Кроме того, происходит облучение калием-40, скапливающимся в организме. И это значение достигает 0,1 – 0,2 мЗв.

Обратите внимание : для измерения радиационного фона можно пользоваться обычным дозиметром, например РАДЭКС РД1706, который дает показания в зивертах.

Вынужденные диагностические дозы рентген облучения

Величина эквивалентной поглощенной дозы при каждом рентгенобследовании может значительно отличаться в зависимости от вида обследования. Доза облучения также зависит от года выпуска медицинской аппаратуры, рабочей нагрузки на него.

Важно : современная рентгеноаппаратура дает излучения в десятки раз более низкие, чем предшествующая. Можно сказать так: новейшая цифровая рентгенотехника безопасна для человека.

Но все же попытаемся привести усредненные цифры доз, которые может получать пациент. Обратим внимание на различие данных, выдаваемых цифровой и обычной рентгеноаппаратурой:

  • цифровая флюорография: 0,03-0,06 мЗв, (самые современные цифровые аппараты дают излучение в дозе от 0,002 мЗв, что в 10 раз ниже их предшественников);
  • плёночная флюорография: 0,15-0,25 мЗв, (старые флюорографы: 0,6-0,8 мЗв);
  • рентгенография органов грудной полости: 0,15-0,4 мЗв.;
  • дентальная (зубная) цифровая рентгенография: 0,015-0,03 мЗв., обычная: 0,1-0,3 мзВ.

Во всех перечисленных случаях речь идет об одном снимке. Исследования в дополнительных проекциях увеличивают дозу пропорционально кратности их проведения.

Рентгеноскопический метод (предусматривает не фотографирование области тела, а визуальный осмотр рентгенологом на экране монитора) дает значительно меньшее излучение за единицу времени, но суммарная доза может быть выше из-за длительности процедуры. Так, за 15 минут рентгеноскопии органов грудной клетки общая доза полученного облучения может составить от 2 до 3,5 мЗв.

Диагностика желудочно-кишечного тракта – от 2 до 6 мЗв.

Компьютерная томография применяет дозы от 1-2 мЗв до 6-11 мЗв, в зависимости от исследуемых органов. Чем более современным является рентгеноаппарат, тем более низкие он дает дозы.

Отдельно отметим радионуклидные методы диагностики. Одна процедура, основанная на радиофармпрепарате, дает суммарную дозу от 2 до 5 мЗв.

Сравнение эффективных доз радиации, полученных во время наиболее часто используемых в медицине диагностических видов исследований, и доз, ежедневно получаемых человеком из окружающей среды, представлено в таблице.

Процедура Эффективная доза облучения Сопоставимо с природным облучением, полученным за указанный промежуток времени
Рентгенография грудной клетки 0,1 мЗв 10 дней
Флюорография грудной клетки 0,3 мЗв 30 дней
Компьютерная томография органов брюшной полости и таза 10 мЗв 3 года
Компьютерная томография всего тела 10 мЗв 3 года
Внутривенная пиелография 3 мЗв 1 год
Рентгенография желудка и тонкого кишечника 8 мЗв 3 года
Рентгенография толстого кишечника 6 мЗв 2 года
Рентгенография позвоночника 1,5 мЗв 6 месяцев
Рентгенография костей рук или ног 0,001 мЗв менее 1 дня
Компьютерная томография – голова 2 мЗв 8 месяцев
Компьютерная томография – позвоночник 6 мЗв 2 года
Миелография 4 мЗв 16 месяцев
Компьютерная томография – органы грудной клетки 7 мЗв 2 года
Микционная цистоуретрография 5-10лет: 1,6 мЗв
Грудной ребенок: 0,8 мЗв
6 месяцев
3 месяца
Компьютерная томография – череп и околоносовые пазухи 0,6 мЗв 2 месяца
Денситометрия костей (определение плотности) 0,001 мЗв менее 1 дня
Галактография 0,7 мЗв 3 месяца
Гистеросальпингография 1 мЗв 4 месяца
Маммография 0,7 мЗв 3 месяца

Важно: Магнитно-резонансная томография не использует рентгеновское облучение. При этом виде исследования на диагностируемую область направляется электромагнитный импульс, возбуждающий атомы водорода тканей, затем измеряется вызывающий их отклик в сформированном магнитном поле с уровнем высокой напряженности. Некоторые люди ошибочно причисляют этот метод к рентгеновским.

Сегодня очень остро встал вопрос радиационного фона. Огромное количество приборов, которые окружают человека, способны нанести ему вред. Именно поэтому сотрудники санитарных инспекций, а также работники службы радиационной безопасности часто проверяют дома, улицы, предприятия, потому что норма радиации превышает допустимые значениия.

Нормы для человека

Норма радиации – это те значения, которые применяются учеными для обозначения безопасной среды в условиях воздействия на него различных приборов. Нормы радиации устанавливаются вышестоящими органами власти, которые и стараются регулировать четкость соблюдения их на том или ином предприятий, а также в обыденной жизни.

Нередко можно услышать, как обсуждается уровень радиации. Норма иногда превышает допустимые значения. В основном завышенные показатели наблюдаются на предприятиях химической промышленности, где работники носят специальные костюмы, чтобы избежать облучения.

Допустимые нормы

Нельзя точно сказать, какова норма радиации для человека. Учеными лишь были выявлены некоторые соответствия излучения с повседневными моментами жизни. Прежде всего, нужно отметить, что все показатели измеряются в микрозивертах в час (в этом определяется уровень воздействия гамма-излучения и радиационного фона).

Считается, что норма радиации, которая является допустимой для простого обывателя, не должна быть больше 5 мЗв в год. Причем показатели рассчитываются в совокупности за пять лет. Если же уровень повышен, то радиологи будут выяснять причину, и прежде всего искать ее в воздухе, проверять работающие химические предприятия в городе.

Примеры некоторых показателей

Итак, норма радиации (допустимая) для человека:


Как видно, человек на протяжении всей жизни поддается облучению. В зависимости от того, какой образ жизни он ведет и где работает, оно будет больше или меньше.

Эффекты при различных дозах облучения

Отдельно нужно сказать о том, какое воздействие окажет та или иная доза облучения:

  • 11 мкЗв в час – именно такая доза считается опасной и увеличивает во много раз вероятность появления раковых опухолей в организме человека.
  • 10000 мЗв в час – при таком облучении человек сразу же заболевает и умирает в течение двух или трех недель.
  • 1000 мЗв в год – при такой дозе облучения человек ощущает временное недомогание, которое проявляется симптомами лучевой болезни. Но она не приводит к летальному исходу и ухудшению состояния настолько, что человек не может вести нормальный образ жизни. Главная опасность состоит в том, что риск онкологических заболеваний становится настолько большим, что потребуются ежегодные осмотры для контроля за мутациями клеток.
  • 0,73 Зв в час – при таком кратковременном облучении наступает изменение состава крови, которое со временем пройдет. Но, как правило, это скажется на самочувствии человека в будущем.

Норма радиации для человека и последствия ее превышения

В том случае, если радиационный фон повышен, пусть даже ненамного, это может привести к таким последствиям для человека, как:

  • онкологические заболевания, причем в разы увеличивается скорость метастазирования;
  • проблемы с развитием плода во время беременности;
  • бесплодие как у женщин, так и у мужчин;
  • потеря зрения;
  • снижение защитной функции организма, а затем – постепенное ее уничтожение.

Что делать в случае повышения радиационного фона

Главной причиной того, что допустимая норма радиации завышена, являются окружающие человека предметы. На сегодняшний день все бытовые приборы облучают жителей земного шара. Если радиационный фон значительно повышен, необходимо обратить внимание и проверить:

  • батареи в доме, особенно те, которые были произведены еще в СССР;
  • мебель;
  • плитку, которую обычно выкладывают в туалете и ванной;
  • некоторые продукты питания, особенно привезенную рыбу (даже сейчас через границу перевозится рыба, побывавшая в отравленных водах).

Норма радиации – настолько важный показатель, что нельзя его игнорировать. Правда, сегодняшний темп и стиль жизни многих людей, а также всеобщая распространенность техники не позволяют его понизить. А происходит это потому, что ни один человек не может обойтись без сотового телефона, компьютера, интернета, так как на этом построена вся наша жизнь! Вот и приходится слышать в новостях о том, что стало умирать больше людей от онкологических заболеваний!

Дозы радиации для человека

Излучение радиации .

Излучение - это физический процесс испускания и распространения при определенных условиях в материи или вакууме частиц и электромагнитных волн. Есть два вида излучения - ионизирующее и не ионизирующее. Второе включает тепловое излучение, ультрафиолетовый и видимый свет, радиоизлучение. Ионизирующее излучение появляется в том случае, если под воздействием высокой энергии электроны отделяются от атома и образуют ионы. Когда говорят о радиоактивном облучении, то, как правило, речь идет об ионизирующем излучении. Сейчас речь пойдет именно об этом виде радиации .

Ионизирующее излучение. Попавшие в окружающую среду радиоактивные вещества называют радиационным загрязнением. Оно связано в основном с выбросами радиоактивных отходов в результате аварий на атомных электростанциях (АЭС), при производстве ядерного оружия и др.

Измерение экспозиционной дозы

Радиацию нельзя увидеть, поэтому, чтобы определить наличие радиации, пользуются специальными измерительными приборами — дозиметром на основе счетчика Гейгера.
Дозиметр представляет собой газонаполненный конденсатор, который пробивается при пролёте ионизирующей частицы через объём газа.
Считывается число радиоактивных частиц, на экране отображается количество этих частиц в разных единицах, чаще всего - как количество радиации за определенный срок времени, например за час.

Влияние радиации на здоровье людей

Радиация вредна для всех живых организмов, она разрушает и нарушает структуру молекул ДНК. Радиация вызывает врожденные пороки и выкидыши, онкологического заболевания, а слишком высокая доза радиации влечет за собой острую или хроническую лучевую болезнь, а также смерть. Радиация - то есть ионизирующее излучение - передает энергию .

Единицей измерения радиоактивности является беккерель (1 беккерель - 1 распад в секунду) или cpm (1 cpm - распад в минуту).
Мера ионизационного воздействия радиоактивного излучения на человека измеряется в рентгенах (Р) или зивертах (Зв), 1 Зв = 100 Р = 100 бэр (бэр - биологический эквивалент рентгена). В одном зиверте 1000 миллизивертов (мЗв).

Для наглядности и примера:
1 рентген = 1000 миллирентген. (80 миллирентген = 0.08 рентген)
1 миллирентген = 1000 микрорентген. (80 микрорентген = 0.08 миллирентген)
1 микрорентген = 0.000001 рентген. (80 рентген = 80000000 микрорентген)
80 Зв = 80000 мЗв = 8000 Р
0,18 мкЗв/ч = 18 мкР/ч
80мР =800мкЗ.

Возьмём для примера расчёт (милли рентген — рентген в час) #1:
1. 80 мР в час = 0.08 Рентген
2. 100000 мР = 100 Рентген (Первые признаки лучевой болезни, по статистике, 10% людей, получивших такую дозу облучения, умирают через 30 дней. Может возникать рвота, симптомы проявляются после 3-6 часов после дозы и могут оставаться вплоть до одного дня. 10-14 дней бывает латентная фаза, ухудшается самочувствие, начинается анорексия и усталость. Иммунная система повреждена, возрастает риск инфекции. Мужчины временно бесплодны. Бывают преждевременные роды или потеря ребенка.)
3. 100/0.08 = 1250 часов/24 = 52 суток, находясь в загрязненном помещении или месте требуется, для того, чтобы появились первые признаки лучевой болезни.

Возьмём для примера расчёт (микро зиверт — микро рентген в час) #2:
1. 1 микро зиверт (мкЗв, µSv) — 100 микро рентген.
2. Норма 0.20 мкЗв (20 мкр/ч)
Норма санитарная почти во всем мире — до 0.30 мк3в (30 мкр/ч)
Т.е 60 микрорентген = 0.00006 рентген.
3. Или 1 рентген = 0,01 Зиверт
100 рентген = 1 Зиверт.

Как пример
11.68 мкЗ/ч = 1168 микроРентгена/ч = 1.168 миллирентгена.
1000 мкР (1мР) = 10.0 мкЗв = 0,001 Рентгена.
0.30 мкЗв = 30 мкР = 0,00003 Рентгена.

КЛИНИЧЕСКИЕ ПОСЛЕДСТВИЯ ОСТРОГО (КРАТКОВРЕМЕННОГО) ГАММА-ОБЛУЧЕНИЯ, РАВНОМЕРНОГО ПО ВСЕМУ ТЕЛУ ЧЕЛОВЕКА

Исходная таблица включает также такие дозы и их эффекты:

- 300–500 Р — бесплодие на всю жизнь. Сейчас принято считать, что при дозе 350 Р у мужчин возникает временное отсутствие сперматозоидов в сперме. Полностью и навсегда сперматозоиды исчезают только при дозе 550 Р т,е при тяжелой форме лучевой болезни;

- 300–500 Р локальное облучения кожи, выпадают волосы, краснеет или слезает кожа;

- 200 Р снижение количества лимфоцитов на долгое время (первые 2–3 недели после облучения).

- 600-1000 Р смертельная доза, вылечиться невозможно, можно только продлить жизнь на несколько лет с тяжелыми симптомами. Наступает практически полное разрушение костного мозга, требующее трансплантации. Серьезное повреждение пищеварительного тракта.

- 10-80 Зв (10000-80000 мЗв, 1000-5000 Р) . Кома, смерть. Смерть наступает через 5-30 минут.

- Более 80 Зв (80000 мЗв, 8000 Р) . Мгновенная смерть.

Миллизиверты атомщиков и ликвидаторов

50 миллизивертов — это годовая предельно допустимая доза облучения операторов на атомных объектах.
250 миллизивертов — это предельно допустимая аварийная доза облучения для профессионалов-ликвидаторов. Необходимо лечение.
300 мЗв — первые признаки лучевой болезни.
4000 мЗв — лучевая болезнь с вероятностью летального исхода, т.е. смерти.
6000 мЗв — смерть в течение нескольких дней.


1 миллизиверт (мЗв) = 1000 микрозивертов (мкЗв).
1 мЗв — это одна тысячная Зиверта (0,001 Зв).

Радиоактивность: альфа-, бета-, гамма-излучение

Атомы вещества состоят из ядра и вращающихся вокруг него электронов. Ядро – это устойчивое образование, которое сложно разрушить. Но, ядра атомов некоторых веществ обладают нестабильностью и могут излучать в пространство энергию и частицы.

Это излучение называют радиоактивным, и оно включает в себя несколько составляющих, которые назвали соответственно первым трем буквам греческого алфавита: α-, β- и γ- излучение. (альфа-, бета- и гамма-излучение). Эти излучения различны, разное и их действие на человека и меры защиты от него.

Альфа-излучение

Поток тяжелых положительно заряженных частиц. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более 5 см и, как правило, полностью задерживается листом бумаги или внешним слоем кожи. Если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или воздухом, оно облучает внутренние органы и становится опасным.

Бета-излучение

Электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в апреле 1986 года пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренности человека.

Гамма-излучение

Фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами окружающей среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние органы. Толстые слои железа, бетона и свинца, являются отличными барьерами на пути гамма-излучения.

Как видно, альфа-излучение по его характеристикам практически не опасно, если не вдохнуть его частички или не съесть с пищей. Бета-излучение может причинить ожоги кожи в результате облучения. Самые опасные свойства у гамма-излучения. Оно проникает глубоко внутрь тела, и вывести его оттуда очень сложно, а воздействие очень разрушительно.

Без специальных приборов знать, что за вид радиации присутствует в данном конкретном случае нельзя, тем более, что всегда можно случайно вдохнуть частички радиации с воздухом.

Поэтому общее правило одно – избегать подобных мест.

Для справки и общей информации:
Вы летите в самолете на высоте в 10 км, где фон порядка 200-250 мкр/ч. Не сложно посчитать, какая доза будет при двух часовом перелёте.


Основными долгоживущими радионуклидами, обусловившими загрязнение с ЧАЭС, являются:

Стронций-90 (Период полураспада ~28 лет)
Цезий-137 (Период полураспада ~31 лет)
Америций-241 (Период полураспада ~430 года)
Плутоний-239 (Период полураспада - 24120 лет)
Прочие радиоактивные элементы (в том числе изотопы Йод-131, Кобальт-60, Цезий-134) к настоящему времени из-за относительно коротких периодов полураспада уже практически полностью распались и и не влияют на радиоактивное загрязнение местности.

(Просмотрено 113625 раз)

Термин "радиоактивность" был предложен в 1898 году Марией Склодовской-Кюри, которая вместе с мужем Пьером Кюри открыла два новых радиоактивных химических элемента - полоний и радий. В честь супругов-ученых первая единица измерения радиоактивности была названа "кюри". Чему она равна, запомнить несложно. Радиоактивность в 1 кюри создает 1 г радия.(Эту единицу определяют еще так: 1 кюри - активность такого количества радиоактивного вещества, в котором происходит З,7*10 10 распадов в секунду.)

Слово "радиоактивность" часто мелькает на страницах газет и журналов в связи с аварией на Чернобыльской АЭС. В этих статьях приводятся цифры, характеризующие степень заражения местности, уровни радиации, дозы облучения. Например, пишут, что в зоне аварии Чернобыльской атомной станции есть районы, где радиоактивность составляет 1200 микрорентген в час. Считается, что безопасно для человека набрать за всю жизнь (за 70 лет) дозу облучения, не превышающую З5 бэров. И сразу возникают вопросы: как сравнить, сопоставить эти цифры: что скрывается за ними?

Радиоактивность можно измерять в различных единицах - в беккерелях, кюри, рентгенах, резерфордах, греях, зивертах и т. д., а мощность излучения - в этих же единицах, отнесенных к единице времени (секунде, часу, суткам, неделе, месяцу, году). Расскажем об основных единицах измерения радиоактивности, чаще других встречающихся в периодической печати.

1 рентген - это такая доза рентгеновских (или гамма) лучей, при которой в 1 см 3 воздуха образуется 2,08*10 9 пар ионов (или в 1 г воздуха -1,61*10 12 пар ионов).

1 бэр (биологический эквивалент рентгена) - доза любого излучения, которая производит такое же биологическое действие, как рентгеновское или гамма-излучение в 1 рентген.

Степень облучения измеряют еще в радах. Слово "рад" образовано от английского radiation absorbed doze - поглощенная доза излучения. 1 рад - это такое излучение, при котором каждый килограмм массы вещества (скажем, человеческого тела) поглощает 0,01 Дж энергии (или 1 г массы поглощает 100 эргов). Для обычных практических расчетов можно считать, что рентгены, рады и бэры равны между собой: 1 рентген=1 рад=1 бэр.

На рисунке приведены мощности различных радиоактивных источников и показано их воздействие на живые организмы. На верхней центральной шкале указано излучение, которое можно наблюдать в эпицентре взрыва атомной и водородной бомбы через определенные промежутки времени - час, день и т. д. На левой нижней шкале приведены мощности радиоактивных источников, с которыми мы сталкиваемся в обыденной жизни. Естественный радиоактивный фон образуется за счет космических лучей, излучения почвы, содержащей радиоактивные вещества, и от выпавших радиоактивных осадков.

На правой шкале приведены средние смертельные дозы для различных животных. Если человек за короткое время, скажем, час, получает дозу облучения 400 рентген, то с вероятностью 50% можно утверждать, что она смертельна. Если доза облучения повысится до 600 рентген, то вероятность летального исхода увеличится до 98%.

Когда взорвался реактор на Чернобыльской атомной электростанции, то мощность излучения из провала достигала 30000 рентген/час, а осколки реактора, попавшие на крышу четвертого блока, "светили" с мощностью 20 000 рентген/час. Нетрудно подсчитать, что достаточно было проконтактировать с ними всего полторы минуты, чтобы получить смертельную дозу облучения.

В заключение несколько слов о периоде полураспада. Так называют время, в течение которого число атомов данного радиоактивного вещества уменьшается вследствие распада вдвое. (Также в два раза уменьшается и интенсивность излучения.) Период полураспада меняется в широких пределах: от долей секунды до миллиардов лет. Среди долгоживущих изотопов, выброшенных в атмосферу в результате взрыва АЭС в Чернобыле, есть стронций-90 и цезий-1З7, периоды полураспада которых около 30 лет, поэтому зона Чернобыльской АЭС еще многие десятилетия будет непригодна для нормальной жизни.

Рисунок и сопровождающий его текст повествуют о малоприятных вещах, но радиация существует, и о ней надо знать.

Человеческий организм поглощает энергию ионизирующих излучений, причем от количества поглощенной энергии зависит степень лучевых поражений. Для характеристики поглощенной энергии ионизирующего излучения единицей массы вещества используется понятие поглощенная доза.

Поглощенная доза – это количество энергии ионизирующего излучения, поглощенное облучаемым телом (тканями организма) и рассчитанной на единицу массы этого вещества. Единица поглощенной дозы в Международной системе единиц (СИ) – грей (Гр).

1 Гр = 1 Дж/кг

Для оценки еще используют и внесистемную единицу – Рад. Рад – образовано от английского «radiationabsorbeddoze» – поглощенная доза излучения. Это такое излучение, при котором каждый килограмм массы вещества (скажем, человеческого тела) поглощает 0.01 Дж энергии (или 1 г массы поглощает 100 эрг).

1 Рад = 0.01 Дж/кг 1 Гр = 100 Рад

    Экспозиционная доза

Для оценки радиационной обстановки на местности, в рабочем или жилом помещениях, обусловленной воздействием рентгеновского или гамма-излучения, используют экспозиционную дозу облучения. В системе СИ единица экспозиционной дозы – кулон на килограмм (1 Кл/кг).

На практике чаще используют внесистемную единицу – рентген (Р). 1 рентген – доза рентгеновских (или гамма) лучей, при которой в 1 см 3 воздуха образуется 2.08 х 10 9 пар ионов (или в 1 г воздуха – 1.61 х 10 12 пар ионов).

1 Р = 2.58 х 10 -3 Кл/кг

Поглощенной дозе 1 Рад соответствует экспозиционная доза, примерно равная 1 рентгену: 1 Рад = 1 Р

    Эквивалентная доза

При облучении живых организмов возникают различные биологические эффекты, разница между которыми при одной и той же поглощенной дозе объясняется разными видами облучения.

Для сравнения биологических эффектов, вызываемых любыми ионизирующими излучениями, с эффектами от рентгеновского и гамма-излучения, вводится понятие об эквивалентной дозе . В системе СИ единица эквивалентной дозы – зиверт (Зв). 1 Зв = 1 Дж/кг

Существует также внесистемная единица эквивалентной дозы ионизирующего излучения – бэр (биологический эквивалент рентгена). 1 бэр – доза любого излучения, которая производит такое же биологическое действие, как рентгеновское или гамма-излучение в 1 рентген.

1 бэр = 1 Р 1 Зв = 100 бэр

Коэффициент, показывающий, во сколько раз оцениваемый вид излучения биологически опаснее, чем рентгеновское или гамма-излучение при одинаковой поглощенной дозе, называется коэффициентом качества излучения (К).

Для рентгеновского и гамма-излучения К=1.

1 Рад х К = 1 бэр 1 Гр х К = 1 Зв

При прочих равных условиях доза ионизирующего излучения тем больше, чем больше время облучения, т.е. доза накапливается со временем. Доза, отнесенная к единице времени, называется мощностью дозы. Если мы говорим, что мощность экспозиционной дозы гамма-излучения составляет 1 Р/ч, то это значит, что за 1 час облучения человек получит дозу, равную 1 Р.

Активность радиоактивного источника (радионуклида) – это физическая величина, характеризующая число радиоактивных распадов в единицу времени. Чем больше радиоактивных превращений происходит в единицу времени, тем выше активность. В системе Си за единицу активности принят беккерель (Бк) - количество радиоактивного вещества, в котором происходит 1 распад за 1 секунду.

Другая единица радиоактивности – кюри. 1 кюри – активность такого количества радиоактивного вещества, в котором происходит 3.7 х 10 10 распадов в секунду.

Время, в течение которого число атомов данного радиоактивного вещества уменьшается вследствие распада вдвое называется периодом полураспада . Период полураспада может меняться в широких пределах: для урана-238 (U) – 4.47 млр. лет; урана-234 – 245 тыс. лет; радия-226 (Ra) – 1600 лет; йода-131 (J) – 8 суток; радона-222 (Rn) – 3.823 суток; полония-214 (Po) – 0.000164 сек.

Среди долгоживущих изотопов, выброшенных в атмосферу в результате взрыва АЭС в Чернобыле, есть стронций-90 и цезий-137, периоды полураспада которых около 30 лет, поэтому зона Чернобыльской АЭС еще многие десятилетия будет непригодна для нормальной жизни.

КОЭФФИЦИЕНТЫ РАДИАЦИОННОГО РИСКА

Следует учитывать, что одни части тела (органы, ткани) более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения органов и тканей следует учитывать с разными коэффициентами. Принимая коэффициент радиационного риска всего организма в целом за единицу, для разных тканей и органов коэффициенты радиационного риска будут следующие:

0.03 – костная ткань; 0.03 – щитовидная железа;

0.12 – легкие; 0.12 – красный костный мозг;

0.15 – молочная железа; 0.25 – яичники или семенники;

0.30 – другие ткани.

ДОЗЫ ОБЛУЧЕНИЯ, ПОЛУЧАЕМЫЕ ЧЕЛОВЕКОМ

С ионизирующими излучениями население в любом регионе земного шара встречается ежедневно. Это, прежде всего, так называемый радиационный фон Земли, который складывается из:

    космического излучения, приходящего на Землю из Космоса;

    излучения от находящихся в почве, строительных материалах, воздухе и воде естественных радиоактивных элементов;

    излучения от природных радиоактивных веществ, которые с пищей и водой попадают внутрь организма, фиксируются тканями и сохраняются в теле человека.

Кроме того, человек встречается с искусственными источниками излучения, включая радиоактивные нуклиды (радионуклиды), созданные руками человека и применяемые в народном хозяйстве.

В среднем доза облучения от всех естественных источников ионизирующего излучения составляет в год около 200 мР, хотя это значение может колебаться в разных регионах земного шара от 50 до 1000 мР/год и более (табл. 1). Доза, получаемая в результате космического излучения, зависит от высоты над уровнем моря; чем выше над уровнем моря, тем больше годовая доза.

Таблица 1

Природные источники ионизирующего излучения

Источники

Средняя годовая доза

Вклад в дозу,

1. Космос (излучение на уровне моря)

2. Земля (грунт, вода, стройматериалы)

3. Радиоактивные элементы, содержащиеся в тканях тела человека (К, С и др.)

4. Другие источники

Средняя суммарная годовая доза

Искусственные источники ионизирующего излучения (табл. 2):

    медицинское диагностическое и лечебное оборудование;

    люди, постоянно пользующиеся самолетом, дополнительно подвергаются незначительному облучению;

    атомные и тепловые электростанции (доза зависит от близости их расположения);

    фосфорные удобрения;

Строения из камня, кирпича, бетона, дерева – плохая вентиляция в помещениях может увеличить дозу облучения, обусловленную вдыханием радиоактивного газа радона, который образуется при естественном распаде радия, содержащегося во многих горных породах и стройматериалах, а также в почве. Радон – невидимый, не имеющий вкуса и запаха тяжелый газ (тяжелее воздуха в 7.5 раз) и др.

Каждый житель Земли на протяжении всей своей жизни ежегодно облучается дозой в среднем 250-400 мбэр.

Считается, что безопасно для человека набрать за всю свою жизнь дозу облучения, не превышающую 35 бэр. При дозах облучения в 10 бэр не наблюдается каких-либо изменений в органах и тканях организма человека. При однократном облучении дозой 25-75 бэр клинически определяются кратковременные незначительные изменения состава крови.

При облучении дозой более 100 бэр наблюдается развитие лучевой болезни:

100 – 200 бэр – Iстепень (легкая);

200 – 400 бэр – IIстепень (средняя);

400 – 600 бэр – IIIстепень (тяжелая);

более 600 бэр – IVстепень (крайне тяжелая).

Выбор редакции
Три дня длилось противостояние главы управы района "Беговой" и владельцев легендарной шашлычной "Антисоветская" . Его итог – демонтаж...

Святой великомученик Никита родился в IV веке в Готии (на восточной стороне реки Дунай в пределах нынешней Румынии и Бессарабии) во...

РЕШЕНИЕ ИМЕНЕМ РОССИЙСКОЙ ФЕДЕРАЦИИ 07 мая 2014 года г. Ефремов Тульская областьЕфремовский районный суд Тульской области в...

Откуда это блюдо получило такое название? Лично я не знаю. Есть еще одно – «мясо по-капитански» и мне оно нравится больше. Сразу...
Мясо по-французски считается исконно русским блюдом, очень сытное блюдо, с удачным сочетанием картофеля, помидоров и мяса. Небольшие...
Мне хочется предложить хозяюшкам на заметку рецепт изумительно нежной и питательной икры из патиссонов. Патиссоны имеют схожий с...
Бананово-шоколадную пасту еще называют бананово-шоколадным крем-джемом, поскольку бананы сначала отвариваются и масса по консистенции и...
Всем привет! Сегодня в расскажу и покажу, как испечь открытый пирог с адыгейским сыром и грибами . Чем мне нравится этот рецепт — в нём...
Предлагаю вам приготовить замечательный пирог с адыгейским сыром. Учитывая, что пирог готовится на дрожжевом тесте, его приготовление не...