Находить проекцию вектора на ось. Проекция вектора на ось


Алгебраическая проекция вектора на какую-либо ось равна произведению длины вектора на косинус угла между осью и вектором:

Пр a b = |b|cos(a,b) или

Где a b - скалярное произведение векторов , |a| - модуль вектора a .

Инструкция . Для нахождения проекции вектора Пp a b в онлайн режиме необходимо указать координаты векторов a и b . При этом вектор может быть задан на плоскости (две координаты) и в пространстве (три координаты). Полученное решение сохраняется в файле Word . Если векторы заданы через координаты точек, то необходимо использовать этот калькулятор .

Заданы :
две координаты вектора
три координаты вектора
a: ; ;
b: ; ;

Классификация проекций вектора

Виды проекций по определению проекция вектора

Виды проекций по системе координат

Свойства проекции вектора

  1. Геометрическая проекция вектора есть вектор (имеет направление).
  2. Алгебраическая проекция вектора есть число.

Теоремы о проекциях вектора

Теорема 1 . Проекция суммы векторов на какую-либо ось равна проекции слагаемых векторов на ту же ось.


Теорема 2 . Алгебраическая проекция вектора на какую-либо ось равна произведению длины вектора на косинус угла между осью и вектором:

Пр a b = |b|cos(a,b)

Виды проекций вектора

  1. проекция на ось OX.
  2. проекция на ось OY.
  3. проекция на вектор.
Проекция на ось OX Проекция на ось OY Проекция на вектор
Если направление вектора A’B’ совпадает с направлением оси OX, то проекция вектора A’B’ имеет положительный знак.
Если направление вектора A’B’ совпадает с направлением оси OY, то проекция вектора A’B’ имеет положительный знак.
Если направление вектора A’B’ совпадает с направлением вектора NM, то проекция вектора A’B’ имеет положительный знак.
Если направление вектора противоположно с направлением оси OX, то проекция вектора A’B’ имеет отрицательный знак.
Если направление вектора A’B’ противоположно с направлением оси OY, то проекция вектора A’B’ имеет отрицательный знак.
Если направление вектора A’B’ противоположно с направлением вектора NM, то проекция вектора A’B’ имеет отрицательный знак.
Если вектор AB параллелен оси OX, то проекция вектора A’B’ равна модулю вектора AB.

Если вектор AB параллелен оси OY, то проекция вектора A’B’ равна модулю вектора AB.

Если вектор AB параллелен вектору NM, то проекция вектора A’B’ равна модулю вектора AB.

Если вектор AB перпендикулярен оси OX, то проекция A’B’ равна нулю (нуль-вектор).

Если вектор AB перпендикулярен оси OY, то проекция A’B’ равна нулю (нуль-вектор).

Если вектор AB перпендикулярен вектору NM, то проекция A’B’ равна нулю (нуль-вектор).

1. Вопрос: Может ли проекция вектора иметь отрицательный знак. Ответ: Да, проекций вектора может быть отрицательной величиной. В этом случае, вектор имеет противоположное направление (см. как направлены ось OX и вектор AB)
2. Вопрос: Может ли проекция вектора совпадать с модулем вектора. Ответ: Да, может. В этом случае, векторы параллельны (или лежат на одной прямой).
3. Вопрос: Может ли проекция вектора быть равна нулю (нуль-вектор). Ответ: Да, может. В этом случае вектор перпендикулярен соответствующей оси (вектору).

Пример 1 . Вектор (рис. 1) образует с осью OX (она задана вектором a) угол 60 о. Если OE есть единица масштаба, то |b|=4, так что .

Действительно, длина вектора (геометрической проекции b) равна 2, а направление совпадает с направлением оси OX.

Пример 2 . Вектор (рис. 2) образует с осью OX (с вектором a) угол (a,b) = 120 o . Длина |b| вектора b равна 4, поэтому пр a b=4·cos120 o = -2.

Действительно, длина вектора равна 2, а направление противоположно направлению оси.

Пусть в пространстве даны два вектора и . Отложим от произвольной точки O векторы и . Углом между векторами и называется наименьший из углов . Обозначается .

Рассмотрим ось l и отложим на ней единичный вектор (т.е. вектор, длина которого равна единице).

Под углом между вектором и осью l понимают угол между векторами и .

Итак, пусть l – некоторая ось и – вектор.

Обозначим через A 1 и B 1 проекции на ось l соответственно точек A и B . Предположим, что A 1 имеет координату x 1 , а B 1 – координату x 2 на оси l .

Тогда проекцией вектора на ось l называется разность x 1 x 2 между координатами проекций конца и начала вектора на эту ось.

Проекцию вектора на ось l будем обозначать .

Ясно, что если угол между вектором и осью l острый, то x 2 > x 1 , и проекция x 2 x 1 > 0; если этот угол тупой, то x 2 < x 1 и проекция x 2 x 1 < 0. Наконец, если вектор перпендикулярен оси l , то x 2 = x 1 и x 2 x 1 =0.

Таким образом, проекция вектора на ось l – это длина отрезка A 1 B 1 , взятая с определённым знаком. Следовательно, проекция вектора на ось это число или скаляр.

Аналогично определяется проекция одного вектора на другой. В этом случае находятся проекции концов даного вектора на ту прямую, на которой лежит 2-ой вектор.

Рассмотрим некоторые основные свойства проекций .

ЛИНЕЙНО ЗАВИСИМЫЕ И ЛИНЕЙНО НЕЗАВИСИМЫЕ СИСТЕМЫ ВЕКТОРОВ

Рассмотрим несколько векторов .

Линейной комбинацией данных векторов называется любой вектор вида , где - некоторые числа. Числа называются коэффициентами линейной комбинации. Говорят также, что в этом случае линейно выражается через данные векторы , т.е. получается из них с помощью линейных действий.

Например, если даны три вектора то в качестве их линейной комбинации можно рассматривать векторы:

Если вектор представлен как линейная комбинация каких-то векторов, то говорят, что он разложен по этим векторам.

Векторы называются линейно зависимыми , если существуют такие числа, не все равные нулю, что . Ясно, что заданные векторы будут линейно зависимыми, если какой-либо из этих векторов линейно выражается через остальные.

В противном случае, т.е. когда соотношение выполняется только при , эти векторы называются линейно независимыми .

Теорема 1. Любые два вектора линейно зависимы тогда и только тогда, когда они коллинеарны.

Доказательство :

Аналогично можно доказать следующую теорему.

Теорема 2. Три вектора линейно зависимы тогда и только тогда, когда они компланарны.

Доказательство .

БАЗИС

Базисом называется совокупность отличных от нулей линейно независимых векторов. Элементы базиса будем обозначать .

В предыдущем пункте мы видели, что два неколлинеарных вектора на плоскости линейно независимы. Поэтому согласно теореме 1, из предыдущего пункта, базисом на плоскости являются любые два неколлинеарных вектора на этой плоскости.

Аналогично в пространстве линейно независимы любые три некомпланарных вектора. Следовательно, базисом в пространстве назовём три некомпланарных вектора.

Справедливо следующее утверждение.

Теорема. Пусть в пространстве задан базис . Тогда любой вектор можно представить в виде линейной комбинации , где x , y , z – некоторые числа. Такое разложение единственно.

Доказательство .

Таким образом, базис позволяет однозначно сопоставить каждому вектору тройку чисел – коэффициенты разложения этого вектора по векторам базиса: . Верно и обратное, каждой тройке чисел x, y, z при помощи базиса можно сопоставить вектор, если составить линейную комбинацию .

Если базис и , то числа x, y, z называются координатами вектора в данном базисе. Координаты вектора обозначают .


ДЕКАРТОВА СИСТЕМА КООРДИНАТ

Пусть в пространстве задана точка O и три некомпланарных вектора .

Декартовой системой координат в пространстве (на плоскости) называется совокупность точки и базиса, т.е. совокупность точки и трёх некомпланарных векторов (2-х неколлинеарных векторов), выходящих из этой точки.

Точка O называется началом координат; прямые, проходящие через начало координат в направлении базисных векторов, называются осями координат – осью абсцисс, ординат и аппликат. Плоскости, проходящие через оси координат, называют координатными плоскостями.

Рассмотрим в выбранной системе координат произвольную точку M . Введём понятие координаты точки M . Вектор , соединяющий начало координат с точкой M . называется радиус-вектором точки M .

Вектору в выбранном базисе можно сопоставить тройку чисел – его координаты: .

Координаты радиус-вектора точки M . называются координатами точки M . в рассматриваемой системе координат. M(x,y,z) . Первая координата называется абсциссой, вторая – ординатой, третья – аппликатой.

Аналогично определяются декартовы координаты на плоскости. Здесь точка имеет только две координаты – абсциссу и ординату.

Легко видеть, что при заданной системе координат каждая точка имеет определённые координаты. С другой стороны, для каждой тройки чисел найдётся единственная точка, имеющая эти числа в качестве координат.

Если векторы, взятые в качестве базиса, в выбранной системе координат, имеют единичную длину и попарно перпендикулярны, то система координат называется декартовой прямоугольной.

Несложно показать, что .

Направляющие косинусы вектора полностью определяют его направление, но ничего не говорят о его длине.

Проектирование различных линий и поверхностей на плоскость позволяет построить наглядное изображение предметов в виде чертежа. Будем рассматривать прямоугольное проектирование, при котором проектирующие лучи перпендикулярны плоскости проекции. ПРОЕКЦИЕЙ ВЕКТОРА НА ПЛОСКОСТЬ считают вектор = (рис. 3.22), заключенный между перпендикулярами, опущенными из его начала и конца.


Рис. 3.22. Векторная проекция вектора на плоскость.

Рис. 3.23. Векторная проекция вектора на ось.

В векторной алгебре часто приходится проектировать вектор на ОСЬ, то есть на прямую, имеющую определенную ориентацию. Такое проектирование выполняется легко, если вектор и ось L лежат в одной плоскости (рис. 3.23). Однако задача усложняется, когда это условие не выполнено. Построим проекцию вектора на ось, когда вектор и ось не лежат в одной плоскости (рис. 3.24).

Рис. 3.24. Проектирование вектора на ось
в общем случае.

Через концы вектора проводим плоскости, перпендикулярные прямой L. В пересечении с этой прямой данные плоскости определяют две точки А1 и B1 - вектор , который будем называть векторной проекцией данного вектора. Задача нахождения векторной проекции может быть решена проще, если вектор приведен в одну плоскость с осью, что возможно осуществить, так как в векторной алгебре рассматриваются свободные векторы.

Наряду с векторной проекцией, существует и СКАЛЯРНАЯ ПРОЕКЦИЯ, которая равна модулю векторной проекции, если векторная проекция совпадает с ориентацией оси L, и равна величине, ей противоположной, если векторная проекция и ось L имеют противоположную ориентацию. Скалярную проекцию будем обозначать:

Векторная и скалярная проекции не всегда терминологически разделяются строго на практике. Обычно пользуются термином «проекция вектора», подразумевая под этим скалярную проекцию вектора. При решении же необходимо четко эти понятия различать. Следуя установившейся традиции, будем использовать термины «проекция вектора», подразумевая скалярную проекцию, и «векторная проекция» - в соответствии с установленным смыслом.

Докажем теорему, позволяющую вычислять скалярную проекцию заданного вектора.

ТЕОРЕМА 5. Проекция вектора на ось L равна произведению его модуля на косинус угла между вектором и осью, то есть

(3.5)

Рис. 3.25. Нахождение векторной и скалярной
Проекций вектора на ось L
( и ось L одинаково ориентированы).

ДОКАЗАТЕЛЬСТВО . Выполним предварительно построения, позволяющие найти угол G Между вектором и осью L. Для этого построим прямую MN, параллельную оси L и проходящую через точку О - начало вектора (рис. 3.25). Угол и будет искомым углом. Проведем через точки А и О две плоскости, перпендикулярные оси L. Получим:

Так как ось L и прямая MN параллельны.

Выделим два случая взаимного расположения вектора и оси L.

1. Пусть векторная проекция и ось L одинаково ориентированны (рис. 3.25). Тогда соответствующая скалярная проекция .

2. Пусть и L ориентированы в разные стороны (рис. 3.26).

Рис. 3.26. Нахождение векторной и скалярной проекций вектора на ось L ( и ось L ориентированы в противоположные стороны).

Таким образом, в обоих случаях справедливо утверждение теоремы.

ТЕОРЕМА 6. Если начало вектора приведено к некоторой точке оси L, и эта ось расположена в плоскости s, вектор образует с векторной проекцией на плоскость s угол , а с векторной проекцией на ось L - угол , кроме того сами векторные проекции образуют между собой угол , то

Пусть на плоскости задана прямая l и пересекающая ее прямая m . Проекцией вектора на прямую l параллельно прямой m (вдоль прямой m ) называется вектор (рис.1.13,а). Если прямая m перпендикулярна прямой l , то проекция называется ортогональной.

Пусть в пространстве дана прямая l и пересекающая ее плоскость \rho . Проекцией вектора \vec{a}=\overrightarrow{AB} на прямую l параллельно плоскости \rho (вдоль плоскости \rho ) называется вектор \vec{a}_l=\overrightarrow{AB}_l , началом которого служит проекция A_l , начала A , а концом - проекция B_l конца B вектора \overrightarrow{AB} (рис. 1.13,6). Если плоскость \rho перпендикулярна прямой l , то проекция называется ортогональной.

Проекция вектора на плоскость

Пусть в пространстве задана плоскость я и пересекающая ее прямая \rho . Проекцией вектора \vec{a}=\overrightarrow{AB} на плоскость \rho параллельно прямой m (вдоль прямой m ) называется вектор \vec{a}_{\rho}=\overrightarrow{AB}_{\rho} , началом которого служит проекция A_{\rho} начала A , а концом - проекция B_{\rho} конца B вектора \overrightarrow{AB} (рис. 1.14). Если прямая m перпендикулярна плоскости \rho , то проекция называется ортогональной.

Свойства проекций векторов

1. Проекции вектора на параллельные прямые (или на параллельные плоскости) равны.

2. Проекции равных векторов равны.

3. Проекция суммы векторов равна сумме их проекций.

4. Проекция произведения вектора на число равна произведению этого числа на проекцию вектора, другими словами, отношение коллинеарных векторов равно отношению их проекций (если оно определено).

5. Проекция линейной комбинации векторов равна линейной комбинации проекций.

Рассмотрим эти свойства для проекций векторов на прямую l параллельно прямой m . Для проекций векторов на плоскость или на прямую параллельно плоскости доказательства аналогичные.

Докажем первое свойство. Пусть \vec{a}_l - проекция вектора \vec{a} на прямую l вдоль прямой m , а \vec{a}_l - проекция вектора \vec{a} на прямую l" вдоль той же прямой m , причем прямые l и l" параллельные (рис. 1.15). Четырехугольник, образованный пересечением пары параллельных прямых l и l" штриховыми линиями, параллельными прямой m , является параллелограммом. Следовательно, \vec{a}_{l"}=\vec{a}_l , т.е. проекции одного и того же вектора \vec{a} на параллельные прямые равны.

Докажем второе свойство. Пусть на плоскости даны равные векторы \overrightarrow{AB} и \overrightarrow{CD} , не параллельные прямой m (см. рис. 1.16). Построим равные им векторы \mathop{\overrightarrow{A_lB"}= \overrightarrow{AB}}\limits_{.} и \mathop{\overrightarrow{C_lD"}= \overrightarrow{CD}}\limits_{.} . Из равенства \mathop{\overrightarrow{A_lB"}= \overrightarrow{C_lD"}}\limits_{.} следует, что четырехугольник A_lB"D"C_l - параллелограмм, а треугольники A_lB"B_l и C_lD"D_l равны по стороне и двум прилежащим углам

\big(A_lB"=C_lD",\qquad \angle B"A_lB_l=\angle D"C_lD_l,\qquad \angle A_lB"B_l=\angle C_lD"D_l

как углы с соответственно параллельными сторонами). Следовательно, \mathop{\overrightarrow{A_lB_l}= \overrightarrow{C_lD_l}}\limits_{.} , т.е. равные векторы, не параллельные прямой m , имеют равные проекции. Если же векторы параллельны прямой m , то их проекции также равны, как нулевые векторы. Второе свойство доказано.

Доказательство третьего свойства очевидно для векторов \overrightarrow{AB} и (рис. 1.17): проекция вектора \overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC} равна сумме проекций и \overrightarrow{B_lC_l} , векторов \overrightarrow{AB} и \overrightarrow{BC} , т.е. \overrightarrow{A_lC_l}= \overrightarrow{A_lB_l}+ \overrightarrow{B_lC_l} . Для произвольных векторов \vec{a} и \vec{b} (у которых конец вектора \vec{a} не совпадает с началом вектора \vec{b} ) доказательство сводится к рассмотренному случаю для равных им векторов \overrightarrow{AB}=\vec{a} и \overrightarrow{BC}=\vec{b} , так как равные векторы имеют равные проекции (по второму свойству).

Доказательство четвертого свойства следует из теоремы Фалеса (см. разд. В.2). На рис.1.18 изображены векторы \overrightarrow{AB} и \overrightarrow{AC}=\lambda\overrightarrow{AB} (\lambda>0) , а также их проекции \overrightarrow{A_lB_l} и \overrightarrow{A_lC_l} . По теореме Фалеса \frac{AC}{AB}=\frac{A_lC_l}{A_lB_l}=\lambda , следовательно, \overrightarrow{A_lC_l}= \lambda\overrightarrow{A_lB_l} , что и требовалось доказать. В случае \lambda<0 доказательство аналогичное.

Пятое свойство проекций следует из третьего и четвертого.

Теорема 1.1 (о проекциях вектора на пересекающиеся прямые).

1. Если на плоскости заданы две пересекающиеся прямые l_1 и l_2 , то любой вектор \vec{a} на плоскости можно однозначно представить в виде суммы своих проекций \vec{a}_1 и \vec{a}_2 на эти прямые (проекции на каждую прямую берутся вдоль другой прямой), т.е. .

2. Если в пространстве заданы три прямые l_1,l_2 и l_3 , пересекающиеся в одной точке и не лежащие в одной плоскости, то любой вектор \vec{a} в пространстве можно однозначно представить в виде суммы своих проекций \vec{a}_1,\vec{a}_2,\vec{a}_3 на эти прямые (проекции на каждую прямую берутся вдоль плоскости, содержащей две другие прямые), т.е. .

В самом деле, пусть прямые l_1 и l_2 пересекаются в точке O (рис.1.19,а). Приложим вектор \vec{a} к точке O , т.е. рассмотрим вектор \overrightarrow{OA}=\vec{a} . По правилу параллелограмма сложения векторов (см. разд. 1.2) получаем равенство \overrightarrow{OA}=\vec{a}_1+\vec{a}_2 , которое равносильно доказываемому равенству \vec{a}=\vec{a}_1+\vec{a}_2 , так как равные векторы имеют равные проекции (см. свойство 2 проекций). Единственность представления следует из однозначности нахождения проекций вектора.

Если же вектор \vec{a} коллинеарен одной из прямых, например l_1 , то соответствующие проекции имеют вид: \vec{a}_1=\vec{a},~\vec{a}_2=\vec{o} и равенство \vec{a}=\vec{a}_1+\vec{a}_2=\vec{a}+\vec{o} , очевидно, выполняется.

Аналогично доказывается второе утверждение.

Замечание 1.3.

Справедливы утверждения, обратные к указанным в теореме 1.1.

Если вектор на плоскости равен сумме двух неколлинеарных векторов, т.е. \vec{a}=\vec{a}_1+\vec{a}_2 , то слагаемые \vec{a}_1 и \vec{a}_2 являются проекциями вектора \vec{a} на прямые, содержащие векторы \vec{a}_1 и \vec{a}_2 соответственно.

Если вектор в пространстве равен сумме трех некомпланарных векторов, т.е. \vec{a}=\vec{a}_1+\vec{a}_2+\vec{a}_3 , то слагаемые \vec{a}_,\vec{a}_2 и \vec{a}_3 являются проекциями вектора \vec{a} на прямые, содержащие векторы \vec{a}_,\vec{a}_2,\vec{a}_3 соответственно.

В самом деле, отложим от произвольной точки O векторы \overrightarrow{OA}=\vec{a},\,\overrightarrow{OA_1}=\vec{a}_1,\,\overrightarrow{OA_2}=\vec{a}_2,\,\overrightarrow{OA_3}=\vec{a}_3 (рис.1.19,6). Тогда из равенства \vec{a}=\vec{a}_1+\vec{a}_2+\vec{a}_3 следует, что \overrightarrow{OA}=\overrightarrow{OA_1}+\overrightarrow{OA_2}+\overrightarrow{OA_3} , т.е. вектор - является диагональю параллелепипеда, построенного на векторах (отсюда следует правило параллелепипеда сложения трех некомпланарных векторов). Поэтому \overrightarrow{OA_1},\,\overrightarrow{OA_2},\,\overrightarrow{OA_3} - проекции вектора \overrightarrow{OA} на прямые l_1,\,l_2,\,l_3 (проекция на каждую прямую берется вдоль плоскости, проходящей через две другие прямые). Так как равные векторы \vec{a} и \overrightarrow{OA} имеют равные проекции (свойство 2), заключаем, что проекции вектора \vec{a} на прямые l_1,\,l_2,\,l_3 равны соответственно. Наконец, проекции на прямые l_1,\,l_2,\,l_3 равны проекциям на параллельные им прямые, содержащие векторы \vec{a}_1,\,\vec{a}_2,\,\vec{a}_3 соответственно.

Пример 1.5. Если прямая пересекает стороны AB,~BC,~CA треугольника ABC (или их продолжения) в точках C_1,~B_1,~C_1 соответственно, то


\frac{\overrightarrow{AC_1}}{\overrightarrow{BC_1}}\cdot\frac{\overrightarrow{BA_1}}{\overrightarrow{CA_1}}\cdot\frac{\overrightarrow{CB_1}}{\overrightarrow{AB_1}}=1.

Решение. Найдем отношения проекций векторов на прямую AB вдоль прямой A_1C_1 (рис. 1.20). Для этого через точку B проведем прямую BB_2 , параллельную прямой A_1C_1 . По свойству 4 проекций имеем:

\frac{\overrightarrow{AC_1}}{\overrightarrow{BC_1}}=\frac{\overrightarrow{AB_1}}{\overrightarrow{B_2B_1}};~~~~\frac{\overrightarrow{BA_1}}{\overrightarrow{CA_1}}=\frac{\overrightarrow{B_2B_1}}{\overrightarrow{CB_1}}.

Перемножая эти пропорции, получаем \frac{\overrightarrow{AC_1}}{\overrightarrow{BC_1}}\cdot\frac{\overrightarrow{BA_1}}{\overrightarrow{CA_1}}=\frac{\overrightarrow{AB_1}}{\overrightarrow{CB_1}} , что равносильно доказываемому равенству.

Заметим, что доказанное утверждение является частью теоремы Менелая.

Пример 1.6. Если на сторонах AB,~BC,~CA треугольника ABC взяты соответственно точки A_1,~B_1,~C_1 так, что прямые AA_1,~BB_1,~CC_1 пересекаются в одной точке, то

\frac{\overrightarrow{AC_1}}{\overrightarrow{BC_1}}\cdot\frac{\overrightarrow{BA_1}}{\overrightarrow{CA_1}}\cdot\frac{\overrightarrow{CB_1}}{\overrightarrow{AB_1}}=-1.

Решение. Пусть прямые пересекаются в точке Q (рис.1.21). Через точку C_1 проведем прямые C_1B_2 и C_1A_2 параллельно BB_1 и AA_1 соответственно. По свойству проекций (свойство 4):


\frac{\overrightarrow{AB_1}}{\overrightarrow{B_2B_1}}=-\frac{\overrightarrow{AB}}{\overrightarrow{BC_1}};~~~\frac{\overrightarrow{BA_1}}{\overrightarrow{A_2A_1}}=\frac{\overrightarrow{AB}}{\overrightarrow{AC_1}};~~~\frac{\overrightarrow{CA_1}}{\overrightarrow{A_2A_1}}=\frac{\overrightarrow{CQ}}{\overrightarrow{C_1Q}}=\frac{\overrightarrow{CB_1}}{\overrightarrow{B_2B_1}}

Учитывая эти равенства и свойства отношений коллинеарных векторов (см, разд.1.2.1), преобразуем левую и правую части последнего равенства:

\begin{gathered}\frac{\overrightarrow{CQ}}{\overrightarrow{C_1Q}}=\frac{\overrightarrow{CA_1}}{\overrightarrow{A_2A_1}}=\frac{\overrightarrow{CA_1}}{\overrightarrow{BA_1}}\cdot\frac{\overrightarrow{BA_1}}{\overrightarrow{A_2A_1}}=\frac{\overrightarrow{CA_1}}{\overrightarrow{BA_1}}\cdot\frac{\overrightarrow{AB}}{\overrightarrow{AC_1}}\\\frac{\overrightarrow{C_1Q}}{\overrightarrow{CQ}}=\frac{\overrightarrow{B_2B_1}}{\overrightarrow{CB_1}}=\frac{\overrightarrow{AB_1}}{\overrightarrow{CB_1}}\cdot\frac{\overrightarrow{B_2B_1}}{\overrightarrow{AB_1}}=\frac{\overrightarrow{AB_1}}{\overrightarrow{CB_1}}\cdot\left(-\frac{\overrightarrow{BC_1}}{\overrightarrow{AB}}\right)\end{gathered}

Запишем произведение правых частей этих равенств, учитывая, что произведение левых частей равно единице:

\frac{\overrightarrow{CA_1}}{\overrightarrow{BA_1}}\cdot\frac{\overrightarrow{AB}}{\overrightarrow{AC_1}}\cdot\frac{\overrightarrow{AB_1}}{\overrightarrow{CB_1}}\cdot\left(-\frac{\overrightarrow{BC_1}}{\overrightarrow{AB}}\right)=-\frac{\overrightarrow{BC_1}}{\overrightarrow{AC_1}}\cdot\frac{\overrightarrow{CA_1}}{\overrightarrow{BA_1}}\cdot\frac{\overrightarrow{AB_1}}{\overrightarrow{CB_1}}\cdot\frac{\overrightarrow{AB}}{\overrightarrow{AB}}=-\frac{\overrightarrow{BC_1}}{\overrightarrow{AC_1}}\cdot\frac{\overrightarrow{CA_1}}{\overrightarrow{BA_1}}\cdot\frac{\overrightarrow{AB_1}}{\overrightarrow{CB_1}}=1

Найдем обратное отношение \frac{\overrightarrow{AC_1}}{\overrightarrow{BC_1}}\cdot\frac{\overrightarrow{BA_1}}{\overrightarrow{CA_1}}\cdot\frac{\overrightarrow{CB_1}}{\overrightarrow{AB_1}}=-1 , что и требовалось доказать.

Заметим, что доказанное утверждение является частью теоремы Чевы.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Многие физические величины полностью определяются заданием некоторого числа. Это, например, объем, масса, плотность, температура тела и др. Такие величины называются скалярными. В связи с этим числа иногда называют скалярами. Но есть и такие величины, которые определяются заданием не только числа, но и некоторого направления. Например, при движении тела следует указать не только скорость, с которой движется тело, но и направление движения. Точно так же, изучая действие какой-либо силы, необходимо указать не только значение этой силы, но и направление ее действия. Такие величины называются векторными. Для их описания было введено понятие вектора, оказавшееся полезным для математики.

Определение вектора

Любая упорядоченная пара точек А к В пространства определяет направленный отрезок , т.е. отрезок вместе с заданным на нем направлением. Если точка А первая, то ее называют началом направленного отрезка, а точку В - его концом. Направлением отрезка считают направление от начала к концу.

Определение
Направленный отрезок называется вектором.

Будем обозначать вектор символом \(\overrightarrow{AB} \), причем первая буква означает начало вектора, а вторая - его конец.

Вектор, у которого начало и конец совпадают, называется нулевым и обозначается \(\vec{0} \) или просто 0.

Расстояние между началом и концом вектора называется его длиной и обозначается \(|\overrightarrow{AB}| \) или \(|\vec{a}| \).

Векторы \(\vec{a} \) и \(\vec{b} \) называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. Коллинеарные векторы могут быть направлены одинаково или противоположно.

Теперь можно сформулировать важное понятие равенства двух векторов.

Определение
Векторы \(\vec{a} \) и \(\vec{b} \) называются равными (\(\vec{a} = \vec{b} \)), если они коллинеарны, одинаково направлены и их длины равны.

На рис. 1 изображены слева неравные, а справа - равные векторы \(\vec{a} \) и \(\vec{b} \). Из определения равенства векторов следует, что если данный вектор перенести параллельно самому себе, то получится вектор, равный данному. В связи с этим векторы в аналитической геометрии называют свободными.

Проекция вектора на ось

Пусть в пространстве заданы ось \(u \) и некоторый вектор \(\overrightarrow{AB} \). Проведем через точки А и В плоскости, перпендикулярные оси \(u \). Обозначим через А" и В" точки пересечения этих плоскостей с осью (см. рисунок 2).

Проекцией вектора \(\overrightarrow{AB} \) на ось \(u \) называется величина А"В" направленного отрезка А"В" на оси \(u \). Напомним, что
\(A"B" = |\overrightarrow{A"B"}| \) , если направление \(\overrightarrow{A"B"} \) совпадает c направлением оси \(u \),
\(A"B" = -|\overrightarrow{A"B"}| \) , если направление \(\overrightarrow{A"B"} \) противоположно направлению оси \(u \),
Обозначается проекция вектора \(\overrightarrow{AB} \) на ось \(u \) так: \(Пр_u \overrightarrow{AB} \).

Теорема
Проекция вектора \(\overrightarrow{AB} \) на ось \(u \) равна длине вектора \(\overrightarrow{AB} \) , умноженной на косинус угла между вектором \(\overrightarrow{AB} \) и осью \(u \) , т.е.

\(Пр_u \overrightarrow{AB} = |\overrightarrow{AB}|\cos \varphi \) где \(\varphi \) - угол между вектором \(\overrightarrow{AB} \) и осью \(u \).

Замечание
Пусть \(\overrightarrow{A_1B_1}=\overrightarrow{A_2B_2} \) и задана какая-то ось \(u \). Применяя к каждому из этих векторов формулу теоремы, получаем

\(Пр_u \overrightarrow{A_1B_1} = Пр_u \overrightarrow{A_2B_2} \) т.е. равные векторы имеют равные проекции на одну и ту же ось.

Проекции вектора на оси координат

Пусть в пространстве заданы прямоугольная система координат Oxyz и произвольный вектор \(\overrightarrow{AB} \). Пусть, далее, \(X = Пр_u \overrightarrow{AB}, \;\; Y = Пр_u \overrightarrow{AB}, \;\; Z = Пр_u \overrightarrow{AB} \). Проекции X, Y, Z вектора \(\overrightarrow{AB} \) на оси координат называют его координатами. При этом пишут
\(\overrightarrow{AB} = (X;Y;Z) \)

Теорема
Каковы бы ни были две точки A(x 1 ; y 1 ; z 1) и B(x 2 ; y 2 ; z 2), координаты вектора \(\overrightarrow{AB} \) определяются следующими формулами:

X = x 2 -x 1 , Y = y 2 -y 1 , Z = z 2 -z 1

Замечание
Если вектор \(\overrightarrow{AB} \) выходит из начала координат, т.е. x 2 = x, y 2 = y, z 2 = z, то координаты X, Y, Z вектора \(\overrightarrow{AB} \) равны координатам его конца:
X = x, Y = y, Z = z.

Направляющие косинусы вектора

Пусть дан произвольный вектор \(\vec{a} = (X;Y;Z) \); будем считать, что \(\vec{a} \) выходит из начала координат и не лежит ни в одной координатной плоскости. Проведем через точку А плоскости, перпендикулярные осям. Вместе с координатными плоскостями они образуют прямоугольный параллелепипед, диагональю которого служит отрезок ОА (см. рисунок).

Из элементарной геометрии известно, что квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его измерений. Следовательно,
\(|OA|^2 = |OA_x|^2 + |OA_y|^2 + |OA_z|^2 \)
Но \(|OA| = |\vec{a}|, \;\; |OA_x| = |X|, \;\; |OA_y| = |Y|, \;\;|OA_z| = |Z| \); таким образом, получаем
\(|\vec{a}|^2 = X^2 + Y^2 + Z^2 \)
или
\(|\vec{a}| = \sqrt{X^2 + Y^2 + Z^2} \)
Эта формула выражает длину произвольного вектора через его координаты.

Обозначим через \(\alpha, \; \beta, \; \gamma \) углы между вектором \(\vec{a} \) и осями координат. Из формул проекции вектора на ось и длины вектора получаем
\(\cos \alpha = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \beta = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \gamma = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \alpha, \;\; \cos \beta, \;\; \cos \gamma \) называются направляющими косинусами вектора \(\vec{a} \) .

Возводя в квадрат левую и правую части каждого из предыдущих равенств и суммируя полученные результаты, имеем
\(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \)
т.е. сумма квадратов направляющих косинусов любого вектора равна единице.

Линейные операции над векторами и их основные свойства

Линейными операциями над векторами называются операции сложения и вычитания векторов и умножения векторов на числа.

Сложение двух векторов

Пусть даны два вектора \(\vec{a} \) и \(\vec{b} \). Суммой \(\vec{a} + \vec{b} \) называется вектор, который идет из начала вектора \(\vec{a} \) в конец вектора \(\vec{b} \) при условии, что вектор \(\vec{b} \) приложен к концу вектора \(\vec{a} \) (см. рисунок).

Замечание
Действие вычитания векторов обратно действию сложения, т.е. разностью \(\vec{b} - \vec{a} \) векторов \(\vec{b} \) и \(\vec{a} \) называется вектор, который в сумме с вектором\(\vec{a} \) дает вектор \(\vec{b} \) (см. рисунок).

Замечание
Определив сумму двух векторов, можно найти сумму любого числа данных векторов. Пусть, например, даны три вектора \(\vec{a},\;\; \vec{b}, \;\; \vec{c} \). Сложив \(\vec{a} \) и \(\vec{b} \), получим вектор \(\vec{a} + \vec{b} \). Прибавив теперь к нему вектор \(\vec{c} \), получим вектор \(\vec{a} + \vec{b} + \vec{c} \)

Произведение вектора на число

Пусть даны вектор \(\vec{a} \neq \vec{0} \) и число \(\lambda \neq 0 \). Произведением \(\lambda \vec{a} \) называется вектор, который коллинеарен вектору \(\vec{a} \), имеет длину, равную \(|\lambda| |\vec{a}| \), и направление такое же, как и вектор \(\vec{a} \) , если \(\lambda > 0 \), и противоположное, если \(\lambda Геометрический смысл операции умножения вектора \(\vec{a} \neq \vec{0} \) на число \(\lambda \neq 0 \) можно выразить следующим образом: если \(|\lambda| >1 \), то при умножении вектора \(\vec{a} \) на число \(\lambda \) вектор \(\vec{a} \) «растягивается» в \(\lambda \) раз, а если \(|\lambda| 1 \).

Если \(\lambda =0 \) или \(\vec{a} = \vec{0} \), то произведение \(\lambda \vec{a} \) считаем равным нулевому вектору.

Замечание
Используя определение умножения вектора на число нетрудно доказать, что если векторы \(\vec{a} \) и \(\vec{b} \) коллинеарны и \(\vec{a} \neq \vec{0} \), то существует (и притом только одно) число \(\lambda \) такое, что \(\vec{b} = \lambda \vec{a} \)

Основные свойства линейных операций

1. Переместительное свойство сложения
\(\vec{a} + \vec{b} = \vec{b} + \vec{a} \)

2. Сочетательное свойство сложения
\((\vec{a} + \vec{b})+ \vec{c} = \vec{a} + (\vec{b}+ \vec{c}) \)

3. Сочетательное свойство умножения
\(\lambda (\mu \vec{a}) = (\lambda \mu) \vec{a} \)

4. Распределительное свойство относительно суммы чисел
\((\lambda +\mu) \vec{a} = \lambda \vec{a} + \mu \vec{a} \)

5. Распределительное свойство относительно суммы векторов
\(\lambda (\vec{a}+\vec{b}) = \lambda \vec{a} + \lambda \vec{b} \)

Замечание
Эти свойства линейных операций имеют фундаментальное значение, так как дают возможность производить над векторами обычные алгебраические действия. Например, в силу свойств 4 и 5 можно выполнять умножение скалярного многочлена на векторный многочлен «почленно».

Теоремы о проекциях векторов

Теорема
Проекция суммы двух векторов на ось равна сумме их проекций на эту ось, т.е.
\(Пр_u (\vec{a} + \vec{b}) = Пр_u \vec{a} + Пр_u \vec{b} \)

Теорему можно обобщить на случай любого числа слагаемых.

Теорема
При умножении вектора \(\vec{a} \) на число \(\lambda \) его проекция на ось также умножается на это число, т.е. \(Пр_u \lambda \vec{a} = \lambda Пр_u \vec{a} \)

Следствие
Если \(\vec{a} = (x_1;y_1;z_1) \) и \(\vec{b} = (x_2;y_2;z_2) \), то
\(\vec{a} + \vec{b} = (x_1+x_2; \; y_1+y_2; \; z_1+z_2) \)

Следствие
Если \(\vec{a} = (x;y;z) \), то \(\lambda \vec{a} = (\lambda x; \; \lambda y; \; \lambda z) \) для любого числа \(\lambda \)

Отсюда легко выводится условие коллинеарности двух векторов в координатах.
В самом деле, равенство \(\vec{b} = \lambda \vec{a} \) равносильно равенствам \(x_2 = \lambda x_1, \; y_2 = \lambda y_1, \; z_2 = \lambda z_1 \) или
\(\frac{x_2}{x_1} = \frac{y_2}{y_1} = \frac{z_2}{z_1} \) т.е. векторы \(\vec{a} \) и \(\vec{b} \) коллинеарны в том и только в том случае, когда их координаты пропорциональны.

Разложение вектора по базису

Пусть векторы \(\vec{i}, \; \vec{j}, \; \vec{k} \) - единичные векторы осей координат, т.e. \(|\vec{i}| = |\vec{j}| = |\vec{k}| = 1 \), и каждый из них одинаково направлен с соответствующей осью координат (см. рисунок). Тройка векторов \(\vec{i}, \; \vec{j}, \; \vec{k} \) называется базисом.
Имеет место следующая теорема.

Теорема
Любой вектор \(\vec{a} \) может быть единственным образом разложен по базису \(\vec{i}, \; \vec{j}, \; \vec{k}\; \), т.е. представлен в виде
\(\vec{a} = \lambda \vec{i} + \mu \vec{j} + \nu \vec{k} \)
где \(\lambda, \;\; \mu, \;\; \nu \) - некоторые числа.

Выбор редакции
Меню - основа ресторанного бизнеса. Это не просто список блюд, которые подают в заведении, а способ предложить посетителю то, что ему...

Вы всё ещё сомневаетесь в своих силах? Отставить все сомнения, пришло время вооружиться уверенностью в себе и двигаться к собственному...

Вы всё ещё сомневаетесь в своих силах? Отставить все сомнения, пришло время вооружиться уверенностью в себе и двигаться к собственному...

Как должен выглядеть фирменный бланк организации и как его создать? Об этом читайте в нашей статье. Из статьи вы узнаете: В каких...
ХРИСТОФОР КОЛУМБ Загадка происхождения Всемирно известный мореплаватель Христофор Колумб родился в небогатой генуэзской семье в Италии...
Детально: молитва ангелу хранителю за детей - со всех открытых источников и разных уголков мира на сайте сайт для наших уважаемых...
Умение красиво и правильно разговаривать пригодится на протяжении жизни каждому человеку. Грамотная поставленная речь указывает на то,...
Солдаты, одетые в костюмы химической защиты, пробираются через туннель в Кэмп Стенли, Южная Корея. В Корее угроза «туннельной войны» со...
Если Вы внезапно захворали и не можете справиться с тяжелой болезнью, обязательно прочитайте молитву Святому Луке об исцелении и...