Определить методом множителей лагранжа условные экстремумы функций. Условная оптимизация


Точка М называется внутренней для некоторого множества G, если она принадлежит этому множеству вместе с некоторой своей окрестностью. Точка N называется граничной для множества G, если в любой ее полной окрестности имеются точки, как принадлежащие G, так и не принадлежащие ему.

Совокупность всех граничных точек множества G называется границей Г.

Множество G будет называться областью, если все его точки – внутренние (открытое множество). Множество G с присоединенной границей Г называется замкнутой областью. Область называется ограниченной, если она целиком содержится внутри круга достаточно большого радиуса.

Наименьшее и наибольшее значения функции в данной области называются абсолютными экстремумами функции в этой области.

Теорема Вейерштрасса: функция, непрерывная в ограниченной и замкнутой области, достигает в этой области своего наименьшего и своего наибольшего значений.

Следствие. Абсолютный экстремум функции в данной области достигается либо в критической точке функции, принадлежащей этой области, либо на Для отыскания наибольшего и наименьшего значений функции в замкнутой областиG необходимо найти все ее критические точки в этой области, вычислить значения функции в этих точках (включая граничные) и путем сравнения полученных чисел выбрать наибольшее и наименьшее из них.

Пример 4.1. Найти абсолютный экстремум функции (наибольшее и наименьшее значения)
в треугольной областиD с вершинами
,
,
(рис.1).


;
,

то есть точка О(0, 0) – критическая точка, принадлежащая области D. z(0,0)=0.

    Исследуем границу:

а) ОА: y=0
;z(x, 0)=0; z(0, 0)=0; z(1, 0)=0,

б) ОВ: х=0
z(0,y)=0; z(0, 0)=0; z(0, 2)=0,

в) АВ: ;
,

Пример 4.2. Найти наибольшее и наименьшее значения функции в замкнутой области, ограниченной осями координат и прямой
.

1) Найдем критические точки, лежащие в области:

,
,

.

    Исследуем границу. Т.к. граница состоит из отрезка ОА оси Ох, отрезка ОВ оси Оу и отрезка АВ, то определим наибольшее и наименьшее значения функции z на каждом из этих отрезков.

, z(0, 2)=–3, z(0, 0)=5, z(0, 4)=5.

M 3 (5/3,7/3), z(5/3, 7/3)=–10/3.

Среди всех найденных значений выбираем z наиб =z(4, 0)=13; z наим =z(1, 2)=–4.

5. Условный экстремум. Метод множителей Лагранжа

Рассмотрим задачу, специфическую для функций нескольких переменных, когда ее экстремум ищется не на всей области определения, а на множестве, удовлетворяющему некоторому условию.

Пусть рассматривается функция
, аргументыикоторой удовлетворяют условию
, называемому уравнением связи.

Точка
называется точкой условного максимума (минимума), если существует такая окрестность этой точки, что для всех точек
из этой окрестности удовлетворяющих условию
, выполняется неравенство
или
.

На рис.2 изображена точка условного максимума
. Очевидно, что она не является точкой безусловного экстремума функции
(на рис.2 это точка
).

Наиболее простым способом нахождения условного экстремума функции двух переменных является сведение задачи к отысканию экстремума функции одной переменной. Допустим уравнение связи
удалось разрешить относительно одной из переменных, например, выразитьчерез:
. Подставив полученное выражение в функцию двух переменных, получим

т.е. функцию одной переменной. Ее экстремум и будет условным экстремумом функции
.

Пример 5.1. Найти точки максимума и минимума функции
при условии
.

Решение. Выразим из уравнения
переменнуючерез переменнуюи подставим полученное выражение
в функцию. Получим
или
. Эта функция имеет единственный минимум при
. Соответствующее значение функции
. Таким образом,
– точка условного экстремума (минимума).

В рассмотренном примере уравнение связи
оказалось линейным, поэтому его легко удалось разрешить относительно одной из переменных. Однако в более сложных случаях сделать это не удается.

Для отыскания условного экстремума в общем случае используется метод множителей Лагранжа. Рассмотрим функцию трех переменных . Эта функция называется функцией Лагранжа, а– множитель Лагранжа. Верна следующая теорема.

Теорема. Если точка
является точкой условного экстремума функции
при условии
, то существует значениетакое, что точка
является точкой экстремума функции
.

Таким образом, для нахождения условного экстремума функции
при условии
требуется найти решение системы

Последнее из этих уравнений совпадает с уравнением связи. Первые два уравнения системы можно переписать в виде, т.е. в точке условного экстремума градиенты функций
и
коллинеарны. На рис. 3 показан геометрический смысл условий Лагранжа. Линия
пунктирная, линия уровня
функции
сплошные. Из рис. следует, что в точке условного экстремума линия уровня функции
касается линии
.

Пример 5.2 . Найти точки экстремума функции
при условии
, используя метод множителей Лагранжа.

Решение. Составляем функцию Лагранжа . Приравнивая к нулю ее частные производные, получим систему уравнений:

Ее единственное решение . Таким образом, точкой условного экстремума может быть только точка (3; 1). Нетрудно убедиться в том, что в этой точке функция
имеет условный минимум. В случае, если число переменных более двух, моет рассматриваться и несколько уравнений связи. Соответственно в этом случае будет и несколько множителей Лагранжа.

Задача нахождения условного экстремума используется при решении таких экономических задач, как нахождение оптимального распределения ресурсов, выбор оптимального портфеля ценных бумаг и др.

Способ определения условного экстремума начинается с построения вспомогательной функции Лагранжа, которая в области допустимых решений достигает максимума для тех же значений переменных x 1 , x 2 , ..., x n , что и целевая функция z . Пусть решается задача определения условного экстремума функции z = f (X) при ограничениях φ i ( x 1 , x 2 , ..., x n ) = 0, i = 1, 2, ..., m , m < n

Составим функцию

которая называется функцией Лагранжа . X , - постоянные множители (множители Лагранжа ). Отметим, что множителям Лагранжа можно придать экономический смысл. Если f (x 1 , x 2 , ..., x n ) - доход, соответствующий плану X = (x 1 , x 2 , ..., x n ) , а функция φ i (x 1 , x 2 , ..., x n ) - издержки i-го ресурса, соответствующие этому плану, то X , - цена (оценка) i-го ресурса, характеризующая изменение экстремального значения целевой функции в зависимости от изменения размера i-го ресурса (маргинальная оценка). L(Х) - функция n + m переменных (x 1 , x 2 , ..., x n , λ 1 , λ 2 , ..., λ n ) . Определение стационарных точек этой функции приводит к решению системы уравнений

Легко заметить, что . Таким образом, задача нахождения условного экстремума функции z = f (X) сводится к нахождению локального экстремума функции L(X) . Если стационарная точка найдена, то вопрос о существовании экстремума в простейших случаях решается на основании достаточных условий экстремума - исследования знака второго дифференциала d 2 L(X) в стационарной точке при условии, что переменные приращения Δx i - связаны соотношениями

полученными путем дифференцирования уравнений связи.

Решение системы нелинейных уравнений с двумя неизвестными с помощью средства Поиск решения

Настройка Поиск решения позволяет находить решение систе­мы нелинейных уравнений с двумя неизвестными:

где
- нелинейная функция от переменныхx и y ,
- произвольная постоянная.

Известно, что пара (x , y ) является решением системы уравнений (10) тогда и только тогда, когда она является решением следующего уравнение с двумя неизвестными:

С другой стороны, решение системы (10) - это точки пересечения двух кривых: f ] (x , y ) = C и f 2 (х, у) = С 2 на плоскости ХО Y .

Из этого следует метод нахождения корней системы. нелинейных уравнений:

    Определить (хотя бы приближенно) интервал существования решения системы уравнений (10) или уравнения (11). Здесь не­обходимо учитывать вид уравнений, входящих в систему, область определения каждого их уравнений и т. п. Иногда применяется подбор начального приближения решения;

    Протабулировать решение уравнения (11) по переменным x и y на выбранном интервале, либо построить графики функций f 1 (x , y ) = С, и f 2 (х,у) = С 2 (система(10)).

    Локализовать предполагаемые корни системы уравнений - найти несколько минимальных значений из таблицы табулирование­ корней уравнения (11), либо определить точки пересечения кривых, входящих в систему (10).

4. Найти корни для системы уравнений (10) с помощью надстройки Поиск решения.

Метод множителей Лагранжа.

Метод множителей Лагранжа является одним из методов, которые позволяют решать задачи нелинейного программирования.

Нелинейное программирование-это раздел математического программирования, изучающий методы решения экстремальных задач с нелинейной целевой функцией и областью допустимых решений, определенной нелинейными ограничениями. В экономике это соответствует тому, что результаты (эффективность) возрастают или убывают непропорционально изменению масштабов использования ресурсов (или, что то же самое, масштабов производства): напр., из-за деления издержек производства на предприятиях на переменные и условно-постоянные; из-за насыщения спроса на товары, когда каждую следующую единицу продать труднее, чем предыдущую и т. д.

Задача нелинейного программирования ставится как задача нахождения оптимума определенной целевой функции

F(x 1 ,…x n), F (x ) → max

при выполнении условий

g j (x 1 ,…x n)≥0, g (x ) ≤ b , x ≥ 0

где x -вектор искомых переменных;

F (x ) -целевая функция;

g (x ) - функция ограничений (непрерывно дифференцируемая);

b - вектор констант ограничений.

Решение задачи нелинейного программирования (глобальный максимум или минимум) может принадлежать либо границе, либо внутренней части допустимого множества.

В отличие от задачи линейного программирования, в задаче программирования нелинейного оптимум не обязательно лежит на границе области, определенной ограничениями. Иначе говоря, задача состоит в выборе таких неотрицательных значений переменных, подчиненных системе ограничений в форме неравенств, при которых достигается максимум (или минимум) данной функции. При этом не оговариваются формы ни целевой функции, ни неравенств. Могут быть разные случаи: целевая функция нелинейная, а ограничения линейны; целевая функция линейна, а ограничения (хотя бы одно из них) нелинейные; и целевая функция, и ограничения нелинейные.

Задача нелинейного программирования встречается в естественных науках, технике, экономике, математике, в сфере деловых отношений и в науке управления государством.



Нелинейное программирование, например, связано с основной экономической задачей. Так в задаче о распределении ограниченных ресурсов максимизируют либо эффективность, либо, если изучается потребитель, потребление при наличии ограничений, которые выражают условия недостатка ресурсов. В такой общей постановке математическая формулировка задачи может оказаться невозможной, но в конкретных применениях количественный вид всех функций может быть определен непосредственно. Например, промышленное предприятие производит изделия из пластмассы. Эффективность производства здесь оценивается прибылью, а ограничения интерпретируются как наличная рабочая сила, производственные площади, производительность оборудования и т.д.

Метод "затраты - эффективность" также укладывается в схему нелинейного программирования. Данный метод был разработан для использования при принятии решений в управлении государством. Общей функцией эффективности является благосостояние. Здесь возникают две задачи нелинейного программирования: первая - максимизация эффекта при ограниченных затратах, вторая - минимизация затрат при условии, чтобы эффект был выше некоторого минимального уровня. Обычно эта задача хорошо моделируется с помощью нелинейного программирования.

Результаты решения задачи нелинейного программирования являются подспорьем при принятии государственных решений. Полученное решение является, естественно, рекомендуемым, поэтому необходимо исследовать предположения и точность постановки задачи нелинейного программирования, прежде чем принять окончательное решение.

Нелинейные задачи сложны, часто их упрощают тем, что приводят к линейным. Для этого условно принимают, что на том или ином участке целевая функция возрастает или убывает пропорционально изменению независимых переменных. Такой подход называется методом кусочно-линейных приближений, он применим, однако, лишь к некоторым видам нелинейных задач.

Нелинейные задачи в определенных условиях решаются с помощью функции Лагранжа: найдя ее седловую точку, тем самым находят и решение задачи. Среди вычислительных алгоритмов Н. п. большое место занимают градиентные методы. Универсального же метода для нелинейных задач нет и, по-видимому, может не быть, поскольку они чрезвычайно разнообразны. Особенно трудно решаются многоэкстремальные задачи.

Одним из методов, которые позволяют свести задачу нелинейного программирования к решению системы уравнений, является метод неопределенных множителей Лагранжа.

С помощью метода множителей Лагранжа по существу устанавливаются необходимые условия, позволяющие идентифицировать точки оптимума в задачах оптимизации с ограничениями в виде ра­венств. При этом задача с ограничениями преобразуется в эквива­лентную задачу безусловной оптимизации, в которой фигурируют некоторые неизвестные параметры, называемые множителями Ла­гранжа.

Метод множителей Лагранжа заключается в сведении задач на условный экстремум к задачам на безусловный экстремум вспомогательной функции - т. н. функции Лагранжа.

Для задачи об экстремуме функции f (х 1 , x 2 ,..., x n ) при условиях (уравнениях связи) φ i (x 1 , x 2 , ..., x n ) = 0, i = 1, 2,..., m , функция Лагранжа имеет вид

L(x 1, x 2… x n ,λ 1, λ 2 ,…λm)=f(x 1, x 2… x n)+∑ i -1 m λ i φ i (x 1, x 2… x n)

Множители λ 1 , λ 2 , ..., λm наз. множителями Лагранжа.

Если величины x 1 , x 2 , ..., x n , λ 1 , λ 2 , ..., λm суть решения уравнений, определяющих стационарные точки функции Лагранжа, а именно, для дифференцируемых функций являются решениями системы уравнений

то при достаточно общих предположениях x 1 , x 2 , ..., x n доставляют экстремум функции f.

Рассмотрим задачу минимизации функции n переменных с учетом одного ограничения в виде равенства:

Минимизировать f(x 1, x 2… x n) (1)

при ограничениях h 1 (x 1, x 2… x n)=0 (2)

В соответствии с методом множителей Лагранжа эта задача преобразуется в следующую задачу безусловной оптимизации:

минимизировать L(x,λ)=f(x)-λ*h(x) (3)

где Функция L(х;λ) называется функцией Лагранжа,

λ - неизвестная постоянная, которая носит название множителя Лагранжа. На знак λ никаких требований не накладывается.

Пусть при заданном значении λ=λ 0 безусловный минимум функции L(x,λ) по х достигается в точке x=x 0 и x 0 удовлетворяет уравнению h 1 (x 0)=0. Тогда, как нетрудно видеть, x 0 минимизирует (1) с учетом (2), поскольку для всех значений х, удовлетворяющих (2), h 1 (x)=0 и L(x,λ)=min f(x).

Разумеется, необходимо подобрать значение λ=λ 0 таким образом, чтобы координата точки безусловного минимума х 0 удовлетворяла равенству (2). Это можно сделать, если, рассматривая λ как переменную, найти безусловный минимум функции (3) в виде функции λ, а затем выбрать значение λ, при котором выполняется равенство (2). Проиллюстрируем это на конкретном примере.

Минимизировать f(x)=x 1 2 +x 2 2 =0

при ограничении h 1 (x)=2x 1 +x 2 -2=0=0

Соответствующая задача безусловной оптимизации записывается в следующем виде:

минимизировать L(x,λ)=x 1 2 +x 2 2 -λ(2x 1 +x 2 -2)

Решение. Приравняв две компоненты градиента L к нулю, получим

→ x 1 0 =λ

→ x 2 0 =λ/2

Для того чтобы проверить, соответствует ли стационарная точка х° минимуму, вычислим элементы матрицы Гессе функции L(х;u), рассматриваемой как функция х,

которая оказывается положительно определенной.

Это означает, что L(х,u) - выпуклая функция х. Следовательно, координаты x 1 0 =λ, x 2 0 =λ/2 определяют точку глобального минимума. Оптимальное значение λ находится путем подстановки значений x 1 0 и x 2 0 в уравнение2x 1 +x 2 =2, откуда 2λ+λ/2=2 или λ 0 =4/5. Таким образом, условный минимум достигается при x 1 0 =4/5 и x 2 0 =2/5 и равен min f(x)=4/5.

При решении задачи из примера мы рассматривали L(х;λ) как функцию двух переменных x 1 и x 2 и, кроме того, предполагали, что значение параметра λ выбрано так, чтобы выполнялось ограни­чение. Если же решение системы

J=1,2,3,…,n

в виде явных функций λ получить нельзя, то значения х и λ находятся путем решения следующей системы, состоящей из n+1 уравнений с n+1 неизвестными:

J=1,2,3,…,n., h 1 (x)=0

Для нахождения всех возможных решений данной системы можно использовать численные методы поиска (например, метод Ньютона). Для каждого из решений () следует вычислить элементы матрицы Гессе функции L, рассматриваемой как функция х, и выяснить, является ли эта матрица положительно определенной (локальный минимум) или отрицательно определенной (локальный максимум).

Метод множителей Лагранжа можно распространить на случай, когда задача имеет несколько ограничений в виде равенств. Рассмотрим общую задачу, в которой требуется

Минимизировать f(x)

при ограничениях h k =0, k=1, 2, ..., К.

Функция Лагранжа принимает следующий вид:

Здесь λ 1 , λ 2 , ..., λk -множители Лагранжа, т.е. неизвестные параметры, значения которых необходимо определить. Приравнивая частные производные L по х к нулю, получаем следующую систему n уравнении с n неизвестными:

Если найти решение приведенной выше системы в виде функций вектора λ оказывается затруднительным, то можно расширить систему путем включения в нее ограничений в виде равенств

Решение расширенной системы, состоящей из n+К уравнений с n+К неизвестными, определяет стационарную точку функции L. Затем реализуется процедура проверки на минимум или максимум, которая проводится на основе вычисления элементов матрицы Гессе функции L, рассматриваемой как функция х, подобно тому, как это было проделано в случае задачи с одним ограничением. Для некоторых задач расширенная система n+К уравнений с n+K неизвестными может не иметь решений, и метод множителей Лагранжа оказывается неприменимым. Следует, однако, отметить, что такие задачи на практике встречаются достаточно редко.

Рассмотрим частный случай общей задачи нелинейного программирования, предполагая, что система ограничений содержит только уравнения, отсутствуют условия неотрицательности переменных и и - функции непрерывные вместе со своими частными производными. Следовательно решив систему уравнений (7), получают все точки, в которых функция (6) может иметь экстремальные значения.

Алгоритм метода множителей Лагранжа

1.Составляем функцию Лагранжа.

2.Находим частные производные от функции Лагранжа по переменным x J ,λ i и приравниваем их нулю.

3.Решаем систему уравнений (7), находим точки, в которых целевая функция задачи может иметь экстремум.

4.Среди точек, подозрительных на экстремум, находим такие, в которых достигается экстремум, и вычисляем значения функции (6) в этих точках.

Пример.

Исходные данные: По плану производства продукции предприятию необходимо изготовить 180 изделий. Эти изделия могут быть изготовлены двумя технологическими способами. При производстве x 1 изделий 1 способом затраты равны 4x 1 +x 1 2 руб., а при изготовлении x 2 изделий 2 способом они составляют 8x 2 +x 2 2 руб. Определить сколько изделий каждым из способов следует изготовить, чтобы затраты на производство продукции были минимальными.

Целевая функция для поставленной задачи имеет вид
®min при условиях x 1 +x 2 =180, x 2 ≥0.
1.Составляем функцию Лагранжа
.
2. Вычисляем частные производные по x 1 , x 2, λ и приравниваем их нулю:

3. Решая полученную систему уравнений, находим x 1 =91,x 2 =89

4.Сделав замену в целевой функции x 2 =180-x 1 , получим функцию от одной переменной, а именно f 1 =4x 1 +x 1 2 +8(180-x 1)+(180-x 1) 2

Вычисляем или 4x 1 -364=0 ,

откуда имеем x 1 * =91, x 2 * =89.

Ответ: Количество изделий изготовленных первым способом равно х 1 =91, вторым способом х 2 =89 при этом значение целевой функции равно 17278 руб.

Сегодня на уроке мы научимся находить условные или, как их ещё называют, относительные экстремумы функций нескольких переменных, и, прежде всего, речь пойдёт, конечно же, об условных экстремумах функций двух итрёх переменных , которые встречаются в подавляющем большинстве тематических задач.

Что нужно знать и уметь на данный момент? Несмотря на то, что эта статья находится «на окраине» темы, для успешного усвоения материала потребуется не так уж и много. На данный момент вы должны ориентироваться в основных поверхностях пространства , уметь находить частные производные (хотя бы на среднем уровне) и, как подсказывает беспощадная логика, разбираться в безусловных экстремумах . Но даже если у вас низкий уровень подготовки, не спешите уходить – все недостающие знания/навыки реально «подобрать по пути», причём безо всяких многочасовых мучений.

Сначала проанализируем само понятие и заодно осуществим экспресс-повторение наиболее распространённых поверхностей . Итак, что же такое условный экстремум? …Логика здесь не менее беспощадна =) Условный экстремум функции – это экстремум в обычном понимании этого слова, который достигается при выполнении определённого условия (или условий).

Представьте произвольную «косую» плоскость в декартовой системе . Никакого экстремума здесь нет и в помине. Но это до поры до времени. Рассмотрим эллиптический цилиндр , для простоты – бесконечную круглую «трубу», параллельную оси . Очевидно, что эта «труба» «высечет» из нашей плоскости эллипс , в результате чего в верхней его точке будет максимум, а в нижней – минимум. Иными словами, функция, задающая плоскость, достигает экстремумов при условии , что её пересёк данный круговой цилиндр. Именно «при условии»! Другой эллиптический цилиндр, пересекающий эту плоскость, почти наверняка породит иные значения минимума и максимума.

Если не очень понятно, то ситуацию можно смоделировать реально (правда, в обратном порядке) : возьмите топор, выйдите на улицу и срубите… нет, Гринпис потом не простит – лучше порежем «болгаркой» водосточную трубу =). Условный минимум и условный максимум будут зависеть от того, на какой высоте и под каким (негоризонтальным) углом осуществлён разрез.

Настало время облачить выкладки в математическое одеяние. Рассмотрим эллиптический параболоид , который имеет безусловный минимум в точке . Теперь найдём экстремум при условии . Данная плоскость параллельна оси , а значит, «высекает» из параболоида параболу . Вершина этой параболы и будет условным минимумом. Причём плоскость не проходит через начало координат, следовательно, точка останется не при делах. Не представили картинку? Срочно идём по ссылкам! Потребуется ещё много-много раз.

Вопрос: как найти этот условный экстремум? Простейший способ решения состоит в том, чтобы из уравнения (которое так и называют – условием или уравнением связи ) выразить, например: – и подставить его в функцию:

В результате получена функция одной переменной, задающая параболу, вершина которой «вычисляется» с закрытыми глазами. Найдём критические точки :

– критическая точка.

Далее проще всего использовать второе достаточное условие экстремума :

В частности: , значит, функция достигает минимума в точке . Его можно вычислить напрямую: , но мы пойдём более академичным путём. Найдём «игрековую» координату:
,

запишем точку условного минимума , удостоверимся, что она действительно лежит в плоскости (удовлетворяет уравнению связи) :

и вычислим условный минимум функции :
при условии («добавка» обязательна!!!) .

Рассмотренный способ без тени сомнения можно использовать на практике, однако, он обладает рядом недостатков. Во-первых, далеко не всегда понятна геометрия задачи, а во-вторых, зачастую бывает невыгодно выражать «икс» либо «игрек» из уравнения связи (если вообще есть возможность что-то выразить) . И сейчас мы рассмотрим универсальный метод нахождения условных экстремумов, получивший название метод множителей Лагранжа :

Пример 1

Найти условные экстремумы функции при указанном уравнении связи на аргументы .

Узнаёте поверхности? ;-) …Я рад видеть ваши счастливые лица =)

Кстати из формулировки данной задачи становится ясно, почему условие называют уравнением связи – аргументы функции связаны дополнительным условием, то есть найденные точки экстремума должны обязательно принадлежать круговому цилиндру.

Решение : на первом шаге нужно представить уравнение связи в виде и составить функцию Лагранжа :
, где – так называемый множитель Лагранжа.

В нашем случае и:

Алгоритм нахождения условных экстремумов весьма похож на схему отыскания «обычных» экстремумов . Найдём частные производные функции Лагранжа, при этом с «лямбдой» следует обращаться, как с константой:

Составим и решим следующую систему:

Клубок распутывается стандартно:
из первого уравнения выразим ;
из второго уравнения выразим .

Подставим в уравнение связи и проведём упрощения:

В результате получаем две стационарные точки. Если , то:

если , то:

Легко видеть, что координаты обеих точек удовлетворяют уравнению . Щепетильные люди могут выполнить и полную проверку: для этого нужно подставить в первое и второе уравнения системы, и затем сделать то же самое с набором . Всё должно «сойтись».

Проверим выполнение достаточного условия экстремума для найденных стационарных точек. Я разберу три подхода к решению данного вопроса:

1) Первый способ – это геометрическое обоснование.

Вычислим значения функции в стационарных точках:

Далее записываем фразу примерно такого содержания: сечение плоскости круговым цилиндром представляет собой эллипс, в верхней вершине которого достигается максимум, а в нижней – минимум. Таким образом, бОльшее значение – есть условный максимум, а меньшее – условный минимум.

По возможности лучше применять именно этот метод – он прост, и такое решение засчитывают преподаватели (большим плюсом идёт то, что вы показали понимание геометрического смысла задачи) . Однако, как уже отмечалось, далеко не всегда понятно, что с чем и где пересекается, и тогда на помощь приходит аналитическая проверка:

2) Второй способ основан на использовании знаков дифференциала второго порядка . Если окажется, что в стационарной точке , то функция достигает там максимума, если же – то минимума.

Найдём частные производные второго порядка :

и составим этот дифференциал:

При , значит, функция достигает максимума в точке ;
при , значит, функция достигает минимума в точке .

Рассмотренный метод очень хорош, но обладает тем недостатком, что в ряде случаев практически невозможно определить знак 2-го дифференциала (обычно так бывает, если и/или – разных знаков) . И тогда на помощь приходит «тяжёлая артиллерия»:

3) Продифференцируем по «икс» и по «игрек» уравнение связи:

и составим следующую симметричную матрицу :

Если в стационарной точке , то функция достигает там (внимание! ) минимума, если – то максимума.

Запишем матрицу для значения и соответствующей точки :

Вычислим её определитель :
, таким образом, функция имеет максимум в точке .

Аналогично для значения и точки :

Таким образом, функция имеет минимум в точке .

Ответ : при условии :

После обстоятельного разбора материала просто не могу не предложить вам пару типовых задач для самопроверки:

Пример 2

Найти условный экстремум функции , если её аргументы связаны уравнением

Пример 3

Найти экстремумы функции при условии

И вновь настоятельно рекомендую разобраться в геометрической сути заданий, особенно, это касается последнего примера, где аналитическая проверка достаточного условия – не подарок. Вспомните, какую линию 2-го порядка задаёт уравнение , и какую поверхность эта линия порождает в пространстве. Проанализируйте, по какой кривой цилиндр пересечёт плоскость и где на этой кривой будет минимум, а где – максимум.

Решения и ответы в конце урока.

Рассматриваемая задача находит широкое применение в различных областях, в частности – далеко ходить не будем, в геометрии. Решим всем понравившуюся задачу о поллитровке (см. Пример 7 статьи Экстремальные задачи ) вторым способом:

Пример 4

Каковы должны быть размеры консервной банки цилиндрической формы, чтобы на изготовления банки пошло наименьшее количество материала, если объем банки равен

Решение : рассмотрим переменный радиус основания , переменную высоту и составим функцию площади полной поверхности банки:
(площадь двух крышек + площадь боковой поверхности)

Выбор редакции
СИТУАЦИЯ: Работник, занятый во вредных условиях труда, был направлен на обязательный периодический медицинский осмотр. Но в назначенное...

Федеральный закон № 402-ФЗ от 06.12.2011 в статье 9 предусматривает для коммерческих предприятий свободный выбор форм первичной...

Продолжительность рабочего времени медицинских работников строго контролируется Трудовым кодексом. Установлены определённые часы, на...

Сведений о семье в биографии политолога Сергея Михеева крайне мало. Зато карьерные достижения помогли снискать, как поклонников...
Президент Института Ближнего Востока Евгений Сатановский в ходе беседы с журналистами во время представления своей книги «Диалоги»,...
В истории Новосибирской области - история нашей страны. Все эпохи здесь… И радующие археологов древние поселения, и первые остроги, и...
ИСТОЧНИК: http://portalus.ru (c) Н.Л. ШЕХОВСКАЯ, (c) Более полувека назад, предвидя суть грядущих преобразований в России,...
30 января опубликован Приказ налоговой службы No ММВ-7-11/19@ от 17 января 2018 г. На основании этого с 10 февраля 2-НДФЛ 2018 заполняют...
В настоящее время страхователи обязаны сдавать в Пенсионный фонд следующую отчетность:Расчет по форме РСВ-1 – ежеквартальный расчет по...