Построение графика в методе симпсона. Метод трапеций


(1710-1761).

Рассмотрим отрезок . Пусть известны значения вещественной функции f(x) в точках a, (a+b)/2, b. Существует единственный полином 2-й степени p 2 (x ) , график которого проходит через точки (a, f(a)), ((a+b)/2,f((a+b)/2), (b, f(b)). Формулой Симпсона называется интеграл от этого полинома на отрезке :

Метод Симпсона имеет порядок погрешности 4 и алгебраический порядок точности 3.

Погрешность при интегрировании по отрезку [a ,b ] с шагом h определяется по формуле:

,

где - максимум четвёртой производной функции.

Так же, при невозможности оценить погрешность с помощью максимума четвертой производной (например, на заданном отрезке она не существует, либо стремится к бесконечности), можно использовать более грубую оценку:

,

где - максимум третьей производной функции.

Ссылки

  • Костомаров Д. П., Фаворский А. П. «Вводные лекции по численным методам»

Wikimedia Foundation . 2010 .

  • Метод Рунге - Куттa
  • Метод Фибоначчи поиска экстремума

Смотреть что такое "Метод Симпсона" в других словарях:

    Формула Симпсона - Суть метода аппроксимация функции f (x) (синий график) квадратичным полиномом P (x) (красный) Формула Симпсона (также … Википедия

    РОМБЕРГА МЕТОД - п р а в и л о Р о м б е р г а, метод вычисления определенного интеграла, основанный на Ричардсона экстраполяции. Пусть вычисляется значение I нек рого функционала, при этом вычисляемое приближенное значение Т(h)зависит от параметра h, так что в… … Математическая энциклопедия

    Численное интегрирование - (историческое название: (численная) квадратура) вычисление значения определённого интеграла (как правило, приближённое). Под численным интегрированием понимают набор численных методов отыскания значения определённого интеграла. Численное… … Википедия

    Квадратурные формулы

    Квадратурная формула - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    Прямоугольников формула - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    Формула прямоугольников - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    Формула трапеций - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    РОДЫ - РОДЫ. Содержание: I. Определение понятия. Изменения в организме во время Р. Причины наступления Р..................... 109 II. Клиническое течение физиологических Р. . 132 Ш. Механика Р. ................. 152 IV. Ведение Р.................. 169 V … Большая медицинская энциклопедия

    Интегральное исчисление - раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения. И. и. тесно связано с дифференциальным исчислением (См. Дифференциальное исчисление) и составляет вместе с ним одну из основных частей… … Большая советская энциклопедия

Возникает задача о численном вычислении определенного интеграла, решаемая с помощью формул, носящих название квад­ратурных.

Напомним простейшие формулы численного интегрирования.

Вычислим приближенное численное значение . Интервал интегрирования [а, b] разобьем на п равных частей точками деле­ния
, называемыми узлами квадра­турной формулы. Пусть в узлах известны значения
:


Величина

называется интервалом интегрирования или шагом. Отметим, что в практике -вычислений число я выбирают небольшим, обычно оно не больше 10-20.На частичном интервале

подынтегральную функцию заменяют интерполяционным много­членом


который на рассматриваемом интервале приближенно представ­ляет функцию f (х).

а) Удержим в интерполяционном многочлене только один первый член, тогда


Полученная квадратная формула

называется формулой прямоугольников.

б) Удержим в интерполяционном многочлене два первых члена, тогда

(2)

Формула (2) называется формулой трапеций.

в) Интервал интегрирования
разобьем на четное число 2n равных частей, при этом шаг интегрирования h будет равен. На интервале
длиной 2h подынтегральную функцию заменим интерполяционным многочленом второй сте­пени, т. е. удержим в многочлене три первых члена:

Полученная квадратурная формула называется формулой Симп­сона

(3)

Формулы (1), (2) и (3) имеют простой геометрический смысл. В формуле прямоугольников подынтегральная функция f(х) на интервале
заменяется отрезком прямой у = ук, параллельной оси абсцисс, а в формуле трапеций - отрезком прямой
и вычисляется соответственно площадь прямо­угольника и прямолинейной трапеции, которые затем сумми­руются. В формуле Симпсона функция f(х) на интервале
длиной 2h заменяется квадратным трехчленом - параболой
вычисляется площадь криволинейной параболической трапеции, затем площади суммируются.

ЗАКЛЮЧЕНИЕ

В завершении работы, хочется отметить ряд особенностей применения рассмотренных выше методов. Каждый способ приближённого решения определённого интеграла имеет свои преимущества и недостатки, в зависимости от поставленной задачи следует использовать конкретные методы.

Метод замены переменных является одним из основных методов вычисления неопределенных интегралов. Даже в тех случаях, когда мы интегрируем каким-либо другим методом, нам часто приходится в промежуточных вычислениях прибегать к замене переменных. Успех интегрирования зависит в значительной степени от того, сумеем ли мы подобрать такую удачную замену переменных, которая упростила бы данный интеграл.

По существу говоря изучение методов интегрирования сводится к выяснению того, какую надо сделать замену переменной при том или ином виде подынтегрального выражения.

Таким образом, интегрирование всякой рациональной дроби сводится к интегрированию многочлена и нескольких простейших дробей.

Интеграл от любой рациональной функции может быть выражен через элементарные функции в конечном виде, а именно:

    через логарифмы- в случаях простейших дробей 1 типа;

    через рациональные функции- в случае простейших дробей 2 типа

    через логарифмы и арктангенсы- в случае простейших дробей 3 типа

    через рациональные функции и арктангенсы- в случае простейших дробей 4 типа. Универсальная тригонометрическая подстановка всегда рационализирует подынтегральную функцию, однако часто она приводит к очень громоздким рациональным дробям, у которых, в частности, практически невозможно найти корни знаменателя. Поэтому при возможности применяются частные подстановки, которые тоже рационализируют подынтегральную функцию и приводят к менее сложным дробям.

Формула Ньютона – Лейбница представляет собой общий подход к нахождению определенных интегралов.

Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов.

Точно так же применяются методы подстановки (замены переменной), метод интегрирования по частям, те же приемы нахождения первообразных для тригонометрических, иррациональных и трансцендентных функций. Особенностью является только то, что при применении этих приемов надо распространять преобразование не только на подинтегральную функцию, но и на пределы интегрирования. Заменяя переменную интегрирования, не забыть изменить соответственно пределы интегрирования.

Как следует из теоремы, условие непрерывности функции яв­ляется достаточным условием интегрируемости функции. Но это не означает, что определенный интеграл существует только для непрерывных функций. Класс интегрируемых функций гораздо шире. Так, например, существует определенный интеграл от функ­ций, имеющих конечное число точек разрыва.

Вычис­ление определенного интеграла от непрерывной функции с по­мощью формулы Ньютона-Лейбница сводится к нахождению первообразной, которая всегда существует, но не всегда явля­ется элементарной функцией или функцией, для которой состав­лены таблицы, дающие возможность получить значение интеграла. В многочисленных приложениях интегрируемая функция зада­ется таблично и формула Ньютона - Лейбница непосредственно неприменима.

Если необходимо получить наиболее точный результат, идеально подходит метод Симпсона .

Из выше изученного можно сделать следующий вывод, что интеграл используется в таких науках как физика, геометрия, математика и других науках. При помощи интеграла вычисляют работу силы, находят координаты центр масс, путь пройденный материальной точкой. В геометрии используется для вычисления объема тела, нахождение длины дуги кривой и др.

Разобьем отрезок интегрирования [а , b ] на четное число n равных частей с шагом h . На каждом отрезке [х 0, х 2], [х 2, х 4],..., [x i-1, x i+1],..., [x n-2, x n] подынтегральную функцию f (х ) заменим интерполяционным многочленом второй степени:

Коэффициенты этих квадратных трехчленов можно найти из условий равенства многочлена в точках соответствующим табличным данным . В качестве можно принять интерполяционный многочлен Лагранжа второй степени, проходящий через точки :

Сумму элементарных площадей и (рис. 3.3) можно вычислить с помощью определенного интеграла. Учитывая равенства получаем

-

Рис. 3.3. Иллюстрация к методу Симпсона

Проведя такие вычисления для каждого элементарного отрезка , просуммируем полученные выражения:

Данное выражение для S принимается в качестве значения определенного интеграла:

(3.35)

Полученное соотношение называется формулой Симпсона или формулой парабол .

Эту формулу можно получить и другими способами, например двукратным применением метода трапеций при разбиениях отрезка [а , b ] на части с шагами h и 2h или комбинированием формул прямоугольников и трапеций (см. разд. 3.2.6).

Иногда формулу Симпсона записывают с применением полуцелых индексов. В этом случае число отрезков разбиения п произвольно (не обязательно четно), и формула Симпсона имеет вид

(3.36)

Легко видеть, что формула (3.36) совпадет с (3.35), если формулу (3.35) применить для числа отрезков разбиения 2n и шага h /2.

Пример . Вычислить по методу Симпсона интеграл

Значения функции при n = 10, h = 0.1 приведены в табл. 3.3. Применяя формулу (3.35), находим

Результат численного интегрирования с использованием метода Симпсона оказался совпадающим с точным значением (шесть значащих цифр).

Один из возможных алгоритмов вычисления определенного интеграла по методу Симпсона показан на рис. 3.4. В качестве исходных данных задаются границы отрезка интегрирования [а , b ],погрешность ε, а также формула для вычисления значений подынтегральной функции у = f (x ) .

Рис. 3.4. Алгоритм метода Симпсона

Первоначально отрезок разбивается на две части с шагом h =(b - a)/2. Вычисляется значение интеграла I 1. Потом число шагов удваивается, вычисляется значение I 2 с шагом h /2. Условие окончание счета принимается в виде . Если это условие не выполнено, происходит новое деление шага пополам и т.д.

Отметим, что представленный на рис. 3.4 алгоритм не является оптимальным: при вычислении каждого приближения I 2 не используются значения функции f (x ), уже найденные на предыдущем этапе. Более экономичные алгоритмы будут рассмотрены в разд. 3.2.7.

Навигация по странице.

Метод парабол (Симпсона) - суть метода, формула, оценка погрешности, иллюстрация.

Пусть функция y = f(x) непрерывна на отрезке и нам требуется вычислить определенный интеграл .

Разобьем отрезок на n элементарных отрезков длины точками . Пусть точки являются серединами отрезков соответственно. В этом случае все "узлы" определяются из равенства .

Суть метода парабол.

На каждом интервале подынтегральная функция приближается квадратичной параболой , проходящей через точки . Отсюда и название метода - метод парабол.

Это делается для того, чтобы в качестве приближенного значения определенного интеграла взять , который мы можем вычислить по формуле Ньютона-Лейбница. В этом и заключается суть метода парабол .

Геометрически это выглядит так:


Графическая иллюстрация метода парабол (Симпсона).

Красной линией изображен график функции y=f(x) , синей линией показано приближение графика функции y=f(x) квадратичными параболами на каждом элементарном отрезке разбиения.

Вывод формулы метода Симпсона (парабол).

В силу пятого свойства определенного интеграла имеем .

Для получения формулы метода парабол (Симпсона) нам осталось вычислить .

Пусть (мы всегда можем к этому прийти, проведя соответствующее геометрическое преобразования сдвига для любого i = 1, 2, ..., n ).

Сделаем чертеж.

Покажем, что через точки проходит только одна квадратичная парабола . Другими словами, докажем, что коэффициенты определяются единственным образом.

Так как - точки параболы, то справедливо каждое из уравнений системы

Записанная система уравнений есть система линейных алгебраических уравнений относительно неизвестных переменных . Определителем основной матрицы этой системы уравнений является определитель Вандермонда , а он отличен от нуля для несовпадающих точек . Это указывает на то, что система уравнений имеет единственное решение (об этом говорится в статье ), то есть, коэффициенты определяются единственным образом, и через точки проходит единственная квадратичная парабола.

Перейдем к нахождению интеграла .

Очевидно:

Используем эти равенства, чтобы осуществить последний переход в следующей цепочке равенств:

Таким образом, можно получить формулу метода парабол:

Формула метода Симпсона (парабол) имеет вид
.

Оценка абсолютной погрешности метода Симпсона.

Абсолютная погрешность метода Симпсона оценивается как .

Примеры приближенного вычисления определенных интегралов методом Симпсона (парабол).

Разберем применение метода Симпсона (парабол) при приближенном вычислении определенных интегралов.

Обычно встречается два типа заданий:

Возникает логичный вопрос: "С какой степенью точности проводить промежуточные вычисления"?

Ответ прост - точность промежуточных вычислений должна быть достаточной. Промежуточные вычисления следует проводить с точностью на 3-4 порядка выше, чем порядок . Также точность промежуточных вычислений зависит от числа n - чем больше n , тем точнее следует проводить промежуточные вычисления.

Пример.

Вычислите определенный интеграл методом Симпсона, разбив отрезок интегрирования на 5 частей.

Решение.

Из условия мы знаем, что a = 0; b = 5; n = 5 ; .

Формула метода Симпсона (парабол) имеет вид . Для ее применения нам требуется вычислить шаг , определить узлы и вычислить соответствующие значения подынтегральной функции .

Промежуточные вычисления будем проводить с точностью до четырех знаков (округлять на пятом знаке).

Итак, вычисляем шаг .

Переходим к узлам и значениям функции в них:

Для наглядности и удобства результаты сведем в таблицу:

Подставляем полученные результаты в формулу метода парабол:

Мы специально взяли определенный интеграл, который можно вычислить по формуле Ньютона-Лейбница, чтобы сравнить результаты.

Результаты совпадают с точностью до сотых.

Пример.

Вычислите определенный интеграл методом Симпсона с точностью до 0.001 .

Решение.

В нашем примере a = 0 , .

Первым делом нам нужно определить n . Для этого обратимся к неравенству для оценки абсолютной погрешности метода Симпсона . Можно сказать, что если мы найдем n , для которого будет выполняться неравенство , то при использовании метода парабол для вычисления исходного определенного интеграла абсолютная погрешность не превысит 0.001 . Последнее неравенство можно переписать в виде .

Выясним, какое наибольшее значение принимает модуль четвертой производной подынтегральной функции на отрезке интегрирования.

есть интервал , а отрезок интегрирования содержит точки экстремума, поэтому .

Подставляем найденное значение в неравенство и решим его:

Так как n является натуральным числом (это же количество отрезков, на которые разбивается отрезок интегрирования), то можно брать n = 5, 6, 7, … Чтобы не делать лишних вычислений, возьмем n = 5 .

Теперь действуем как в предыдущем примере. В промежуточных вычислениях округление будем проводить на шестом порядке.

Вычисляем шаг .

Находим узлы и значения подынтегральной функции в них:

Результаты вычислений объединяем в таблицу:

Подставляем значения в формулу метода парабол:

Таким образом, по методу Симпсона получено приближенное значение определенного интеграла с точностью до 0.001 .

Действительно, вычислив исходный интеграл по формуле Ньютона-Лейбница, получаем

Замечание.

Нахождение во многих случаях затруднительно. Можно обойтись без этого, применив альтернативный подход к использованию метода парабол. Его принцип описан в разделе метод трапеций , так что не будем повторяться.

Какой же метод применять при численном интегрировании?

Точность метода Симпсона (парабол) выше точности метода прямоугольников и трапеций для заданного n (это видно из оценки абсолютной погрешности), так что его использование предпочтительнее.

Следует помнить о влиянии вычислительной погрешности на результат при больших n , что может отдалить приближенное значение от точного.

Кафедра «Высшей математики»

Выполнил: Матвеев Ф.И.

Проверила: Бурлова Л.В.

Улан-Удэ.2002

1.Численные методы интегрирования

2.Вывод формулы Симпсона

3.Геометрическая иллюстрация

4.Выбор шага интегрирования

5.Примеры

1. Численные методы интегрирования

Задача численного интегрирования заключается в вычислении интеграла

Посредством ряда значений подынтегральной функции .

Задачи численного интегрирования приходится решать для функций, заданных таблично, функцией, интегралы от которых не берутся в элементарных функциях, и т.д. Рассмотрим только функции одной переменной.

Вместо функции, которую требуется проинтегрировать, проинтегрируем интерполяционный многочлен. Методы, основанные на замене подынтегральной функции интерполяционным многочленом, позволяют по параметрам многочлена оценить точность результата или же по заданной точности подобрать эти параметры.

Численные методы условно можно сгруппировать по способу аппроксимации подынтегральной функции.

Методы Ньютона-Котеса основаны на аппроксимации функции полиномом степени . Алгоритм этого класса отличается только степенью полинома. Как правило, узлы аппроксимирующего полинома – равноотносящие.

Методы сплайн-интегрирования базируются на аппроксимации функции сплайном-кусочным полиномом.

В методах наивысшей алгебраической точности (метод Гаусса) используются специально выбранные неравноотносящие узлы, обеспечивающие минимальную погрешность интегрирования при заданном (выбранном) количестве узлов.

Методы Монте-Карло используются чаще всего при вычислении кратных интегралов, узлы выбираются случайным образом, ответ носит вероятностный характер.


суммарная погрешность

погрешность усечения

погрешность округления

Независимо от выбранного метода в процессе численного интегрирования необходимо вычислить приближенное значение интеграла и оценить погрешность. Погрешность уменьшается при увеличении n-количества

разбиений отрезка . Однако при этом возрастает погрешность округления

за счет суммирования значений интегралов, вычисленных на частичных отрезках.

Погрешность усечения зависит от свойств подынтегральной функции и длины частичного отрезка.

2. Вывод формулы Симпсона

Если для каждой пары отрезков построить многочлен второй степени, затем проинтегрировать его и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона.

Рассмотрим подынтегральную функцию на отрезке . Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с в точках :

Проинтегрируем :

и называется формулой Симпсона.

Полученное для интеграла значение совпадает с площадью криволинейной трапеции, ограниченной осью , прямыми , и параболой, проходящей через точки

Оценим теперь погрешность интегрирования по формуле Симпсона. Будем считать, что у на отрезке существуют непрерывные производные . Составим разность

К каждому из этих двух интегралов уже можно применить теорему о среднем, поскольку непрерывна на и функция неотрицательна на первом интервале интегрирования и неположительна на втором (то есть не меняет знака на каждом из этих интервалов). Поэтому:

(мы воспользовались теоремой о среднем, поскольку - непрерывная функция; ).

Дифференцируя дважды и применяя затем теорему о среднем, получим для другое выражение:

, где

Из обеих оценок для следует, что формула Симпсона является точной для многочленов степени не выше третьей. Запишем формулу Симпсона, напрмер, в виде:

Если отрезок интегрирования слишком велик, то его разбивают на равных частей (полагая ), после чего к каждой паре соседних отрезков , ,..., применяют формулу Симпсона, именно:

Запишем формулу Симпсона в общем виде:

Погрешность формулы Симпсона - метода четвертого порядка:

, (3)

Так как метод Симпсона позволяет получить высокую точность, если не слишком велика. В противном случае метод второго порядка может дать большую точность.

Например, для функции форма трапеции при для дает точный результат , тогда как по формуле Симпсона получаем

3. Геометрическая иллюстрация


На отрезке длиной 2h строится парабола, проходящая через три точки ,. Площадь под параболой, заключенная между осью OX и прямыми, принимают равной интегралу.

Особенностью применения формулы Симпсона является тот факт, что число разбиений отрезка интегрирования - четное.

Если же количество отрезков разбиения - нечетное, то для первых трех отрезков следует применить формулу, использующую параболу третьей степени, проходящую через четыре первые точки, для аппроксимации подынтегральной функции.

(4)

Это формула Симпсона «трех восьмых».

Для произвольного отрезка интегрирования формула (4) может быть «продолжена»; при этом число частичных отрезков должно быть кратно трем ( точек).

, m=2,3,... (5)

Целая часть

Можно получить формулы Ньютона-Котеса старших порядков:

(6)

Количество отрезков разбиения;

Степень используемого полинома;

Производная -го порядка в точке ;

Шаг разбиения.

В таблице 1 выписаны коэффициенты . Каждая строка соответствует одному набору промежутков узлами для построения многочлена k-ой степени. Чтобы воспользоваться этой схемой для большего количества наборов (например, при k=2 и n=6), нужно «продолжить» коэффициенты, а затем сложить их.

Таблица 1:

Алгоритм оценки погрешности формул трапеции и Симпсона можно записать в виде: (7),

где - коэффициент, зависящий от метода интегрирования и свойств подынтегральной функции;

h - шаг интегрирования;

p - порядок метода.

Правило Рунге применяют для вычисления погрешности путем двойного просчета интеграла с шагами h и kh.

(8) - апостериорная оценка. Тогда Iуточн.= +Ro (9), уточненное значение интеграла .

Если порядок метода неизвестен, необходимо вычислить I в третий раз с шагом , то есть:

из системы трех уравнений:

с неизвестными I,А и p получаем:

Из (10) следует (11)

Таким образом, метод двойного просчета, использованный необходимое число раз, позволяет вычислить интеграл с заданной степенью точности. Выбор необходимого числа разбиений осуществляется автоматически. Можно при этом использовать многократное обращение к подпрограммам соответствующих методов интегрирования, не изменяя алгоритмов этих методов. Однако для методов, использующих равноотносящие узлы, удается модифицировать алгоритмы и уменьшить вдвое количество вычислений подынтегральной функции за счет использования интегральных сумм, накопленных при предыдущих кратных разбиениях интервала интегрирования. Два приближенных значения интеграла и, вычисляемые по методу трапеции с шагами и , связаны соотношением:

Аналогично, для интегралов, вычисленных по формуле с шагами и , справедливы соотношения:

,

(13)

4. Выбор шага интегрирования

Для выбора шага интегрирования можно воспользоваться выражением остаточного члена. Возьмем, например, остаточный член формулы Симпсона:

Если ê ê, то ê ê.

По заданной точности e метода интегрирования из последнего неравенства определяем подходящий шаг.

, .

Однако такой способ требует оценки (что на практике не всегда возможно). Поэтому пользуются другими приемами определения оценки точности, которые по ходу вычислений позволяют выбрать нужный шаг h.

Разберем один из таких приемов. Пусть

,

где - приближенное значение интеграла с шагом . Уменьшим шаг в два раза, разбив отрезок на две равные части и ().

Предположим теперь, что меняется не слишком быстро, так что почти постоянна: . Тогда и , откуда , то есть .

Отсюда можно сделать такой вывод: если , то есть если , , а - требуемая точность, то шаг подходит для вычисления интеграла с достаточной точностью. Если же , то расчет повторяют с шагом и затем сравнивают и и т.д. Это правило называется правилом Рунге.

Однако при применении правила Рунге необходимо учитывать величину погрешности вычислений: с уменьшением абсолютная погрешность вычислений интеграла увеличивается (зависимость от обратно пропорциональная) и при достаточно малых может оказаться больше погрешности метода. Если превышает , то для данного шага применять правило Рунге нельзя и желаемая точность не может быть достигнута. В таких случаях необходимо увеличивать значение .

При выводе правила Рунге вы существенно пользовались предположением, что . Если имеется только таблица значений , то проверку «на постоянство» можно сделать непосредственно по таблице Дальнейшее развитие приведенных алгоритмов позволяет перейти к адаптивным алгоритмам, в которых за счет выбора различного шага интегрирования в разных частях отрезка интегрирования в зависимости от свойств уменьшается количество вычислений подынтегральной функции.

Другая схема уточнения значений интеграла - процесс Эйтнена. Производится вычисление интеграла с шагами, причем . Вычисление значений . Тогда (14).

За меру точности метода Симпсона принимают величину:

5. Примеры

Пример 1. Вычислить интеграл по формуле Симпсона, если задана таблицей. Оценить погрешность.

Таблица 3.

Решение: Вычислим по формуле (1) при и интеграл .

По правилу Рунге получаем Принимаем .

Пример 2. Вычислить интеграл .

Решение: Имеем . Отсюда h==0.1. Результаты вычислений приведены в таблице 4.

Таблица 4.

Вычисление интеграла по формуле Симпсона

y0=1,00000; -0,329573ê£ 3.

Оценки для погрешности метода Симпсона: £ 0.0000017 для =0.1, £ 0.0000002 для =0.05.

Чтобы погрешность округления не искажала столь точный результат для формулы Симпсона, все вычисления проводились с шестью знаками после запятой.

Окончательные результаты:

Выбор редакции
Особое место по популярности среди консервированных зимних солений, занимают огурцы. Известно множество рецептов огуречных салатов:...

Телятина – превосходное диетическое мясо молодых животных, разумеется, оно гораздо нежнее, чем мясо взрослых бычков. Регулярное включение...

В конце прошлого столетия кукурузу называли не иначе как королева полей. Сегодня ее выращивают, конечно, не в таких масштабах, но, тем не...

Блины — это традиционное русское блюдо. По традиции блины всегда пекут на Масленицу, а также радуют этим лакомством себя и своих близких...
После закипания температура воды перестает расти и остается неизменной до полного испарения. Парообразование - это процесс перехода из...
Звуки относятся к разделу фонетики. Изучение звуков включено в любую школьную программу по русскому языку. Ознакомление со звуками и их...
1. Логика и язык .Предметом изучения логики являются формы и законы правильного мышления. Мышление есть функция человеческого мозга....
Определение Многогранником будем называть замкнутую поверхность, составленную из многоугольников и ограничивающую некоторую часть...
Мое эссе Я, Рыбалкина Ольга Викторовна. Образование средне - специальное, в 1989 году окончила Петропавловский ордена трудового...