Построение точечных и интервальных прогнозов. Точечный и интервальный прогноз


Идея социально-экономического прогнозирования базируется на предположении, что закономерность развития, действовавшая в прошлом (внутри ряда экономической динамики), сохранится и в прогнозируемом будущем. В этом смысле прогноз основан на экстраполяции. Экстраполяция, проводимая в будущее, называет­ся перспективной, а в прошлое - ретроспективной.

Прогнозирование методом экстраполяции базируется на сле­дующих предположениях:

а) развитие исследуемого явления в целом описывается плавной кривой;

б) общая тенденция развития явления в прошлом и настоящем не указывает на серьезные изменения в будущем;

в) учет случайности позволяет оценить вероятность отклонения от закономерного развития.

Поэтому надежность и точность прогноза зависят от того, насколько близкими к действительности окажутся эти предполо­жения и насколько точно удалось охарактеризовать выявленную в прошлом закономерность.

На основе построенной модели рассчитываются точечные и интервальные прогнозы. Точечный прогноз на основе временных моделей получается подстановкой в модель (уравнение тренда) соответствующего значения фактора времени, т.е. t = n+1 , п+2 , …, n+к.

Точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции кривых, ха­рактеризующих тенденцию, имеет малую вероятность. Возник­новение соответствующих отклонений объясняется следующими причинами.

1. Выбранная для прогнозирования кривая не является единствен­но возможной для описания тенденции. Можно подобрать такую кривую, которая дает более точные результаты.

2. Прогноз осуществляется на основании ограниченного числа исходных данных. Кроме того, каждый исходный уровень об­ладает еще и случайной компонентой. Поэтому и кривая, по которой осуществляется экстраполяция, также будет содержать случайную компоненту.

3. Тенденция характеризует движение среднего уровня ряда ди­намики, поэтому отдельные наблюдения могут от него откло­няться. Если такие отклонения наблюдались в прошлом, то они будут наблюдаться и в будущем.

Интервальные прогнозы строятся на основе точечных прогнозов. До верительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значение прогнозируемого показателя. Ширина интервала зависит от качества модели, т.е. степени ее близости к фактическим данным, числа наблюдений, горизонта прогнозирования и выбранного пользователем уровня вероятности.

При построении доверительного интервала прогноза рассчитывается величина U(к), которая для линейной модели имеет вид

(3.11)

Стандартная ошибка (среднеквадратическое откло­нение от модели);

m - количество факторов в модели, для линейной моде­ли т = 1 .

Коэффициент является табличным значением t -статистики Стьюдента при заданном уровне значимости и числе наблюде­ний. Если исследователь задает уровень вероятности попадания прогнозируемой величины внутрь доверительного интервала, равной 70%, то при n = 9 = 1,12. При вероятности, равной 95%, = 2,36.

Для других моделей величина U(к) рассчитывается аналогичным образом, но имеет более громоздкий вид. Как видно из формулы (3.10), величина U зависит прямо пропорционально от точности модели, коэффициента доверительной вероятности степени углубления в будущее на k шагов вперед, т.е. на момент t = n + k и обратно пропорциональна объему наблюдений. Доверительный интервал прогноза будет иметь следующие границы:

Верхняя граница прогноза = Y прогноз (n + к) + U(к);

Нижняя граница прогноза = Y прогноз (n + к) - U(к).

Если построенная модель адекватна, то с выбранной пользова­телем вероятностью можно утверждать, что при сохранении сло­жившихся закономерностей развития прогнозируемая величина попадает в интервал, образованный верхней и нижней границей.

После получения прогнозных оценок необходимо убедиться в их разумности и непротиворечивости оценкам, полученным иным способом.

3.2. ИСПОЛЬЗОВАНИЕ НАДСТРОЙКИ EXCEL АНАЛИЗ ДАННЫХ ДЛЯ МОДЕЛИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ

Установка Пакета анализа

Ни в одном меню стандартной конфигурации программы Excel вы не найдете указания на Пакет анализа. Даже после установки с компакт-диска Excel он не появится в меню Сервис до тех пор, пока вы не выполните следующие действия:

1) выберите команду Сервис => Надстройки;

2) в диалоговом окне Надстройки (рис. 3.2) установите флажок Пакет анализа, а затем нажмите кнопку 0К;

3) выберите команду Сервис => Анализ данных. Если в меню отсут­ствует команда Анализ данных, то необходимо выполнить установку Пакета анализа с компакт-диска Excel. После этого в нижней части меню Сервис появится новая команда Анализ данных, которая предоставляет доступ к средствам анализа. Для активизации надстройки Пакет анализа следует установить соответствующий флажок.

Пример 3.1. Проверка наличия тренда.

Один из способов проверки обнаружения тренда основан на сравнении средних уровней ряда: временной ряд разбивают на две примерно равные по числу уровней части, каждая из которых рассматривается как некоторая самостоятельная выборочная со­вокупность, имеющая нормальное распределение. Если времен­ной ряд имеет тенденцию к тренду, то средние, вычисленные для каждой совокупности, должны существенно (значимо) различаться между собой. Если же расхождение незначительно, несуществен­но (случайно), то временной ряд не имеет тенденции. Таким об­разом, проверка наличия тренда в исследуемом ряду сводится к проверке гипотезы о равенстве средних двух нормально распре­деленных совокупностей.

Определим наличие основной тенденции (тренда) по данным табл. 3.1 (рис. 3.3).

Для расчета доверительного интервала прогноза необходимо определить среднюю ошибку положения линии регрессии при заданном значении Другими словами, необходимо определить стандартную ошибку, предсказываемого по линии регрессии среднего значения экономического результата, при заданном значении Из предположения о независимости ошибок и следует независимость случайной величины (которая зависит только от ) и случайной величины (которая не зависит от в силу предпосылок МНК о случайности остатков). Тогда –по правилу сложения дисперсий независимых случайных величин.

В уравнении регрессии проведем усреднение и выделим параметр : . Последнее слагаемое равно 0 в силупредпосылок МНК. Теперь перепишем уравнение регрессии в виде:

Отсюда, зависит от дисперсии ошибки среднего значения величины , определенной при участии и дисперсии коэффициента . Имеем

Поскольку суммы теоретических (генеральных) и выборочных значений результативного признака совпадают, т.е. , то совпадают и средние значения этих рядов . Отсюда следует выражение для дисперсии первого слагаемого . Дисперсия коэффициента регрессии , как уже было показано, дается формулой .

Таким образом, формула для расчета стандартной дисперсии ошибки, предсказываемого по линии регрессии значения, имеет вид

Отсюда, ошибка положения лини регрессии при , дается формулой

Вычисленное значение позволяет сделать вывод, что в генеральной совокупности линия регрессии для фактора окажется в интервале

Очевидно, что величина стандартной ошибки будет минимальной, если и она будет возрастать при отклонении от . Таким образом, ошибка будет малой, если признак-фактор находится где-то вблизи центра корреляционного облака.

Если необходимо с некоторой вероятностью сделать прогноз расчетного значения ,по уравнению регрессии имея в виду уже генеральную совокупность статистических данных, то доверительный интервал дается выражением

Пусть , тогда .

Для интервального прогноза индивидуального значения (а не только одной линии регрессии, в целом, как прежде), найдем среднюю стандартную ошибку предсказываемого значения объема продаж. Она вычисляется как корень квадратный из суммы квадрата ошибки положения линии регрессии и остаточной (необъясненной) дисперсии

Индивидуальные значения y могут отклоняться от на величину случайной ошибки ε , рассчитываемой по остаточной дисперсии на одну степень свободы. Поэтому ошибка, предсказываемого отдельного значения, должна включать не только стандартную ошибку , которая характеризует положение линии регрессии, но и случайную ошибку (это добавляет 1-цу под знак корня).



Для индивидуального значения прогноза

где величина представляет собой табличное значение t- критерия Стьюдента на уровне значимости α при числе степеней свободы n –2.

Напомним, что доверительным интервалом называется такой интервал, для которого с наперед заданной вероятностью можно утверждать, что прогнозируемый показатель не выйдет за его пределы. Ширина интервала зависит от качества модели и выбранной вероятности.

К интервальному оцениванию прибегают при малых выборках, когда точечные оценки не являются устойчивыми. Объем выборки берется за основу, когда невозможно организовать сплошное наблюдение генеральной совокупности. Главная проблема эконометрического анализа, связанная с малой выборкой состоит в том, что случайные ошибки, измеряемой характеристики, подчиняются не гауссовскому закону распределения, а закону Стьюдента. В то время как распределение ошибок, исследуемой характеристики в генеральной совокупности, подчиняется гауссовскому закону или близкому к нему.

С точки зрения исходных статистических данных и уравнения регрессии качество модели определяется двумя показателями: адекватностью и точностью.

В общем случае различают два вида статистического прогнозирования: 1) факторное прогнозирование, основанное на количественном измерении параметров регрессии, в частности, коэффициента корреляции, значение которого предполагается неизменным; 2) авторегрессионное прогнозирование – по тренду и цикличности. К настоящему моменту мы рассматриваем – первое.

Вопросы для обсуждения

1. Объясните, чем вызвано появление в модели парной регрессии случайной переменной ε ?



2. Почему перед построением модели парной линейной регрессии необходимо рассчитывать коэффициент корреляции?

3. Объясните смысл понятия «число степеней свободы».

4. По каким вычислениям можно судить о значимости модели в целом?

5. Зачем необходимо рассчитывать t -критерий Стьюдента?

6. Зачем необходимо оценивать интервалы прогноза по линейному уравнению регрессии?

7. В каких пределах должна находиться ошибка аппроксимации, чтобы можно было сделать вывод о хорошем подборе модели к исходным данным?

8. В чем суть предсказания индивидуальных значений зависимой переменной?

9. В каких пределах находится коэффициент детерминации?

10. С увеличением объема выборки: а) увеличивается точность оценок; б) уменьшается ошибка регрессии; в) расширяются интервальные оценки; г) уменьшается коэффициент детерминации; д) увеличивается точность прогноза по модели. (Да; нет; не определено.Ответ поясните).

Идея экономического прогнозирования базируется на предположении, что закономерность развития, действовавшая в прошлом (внутри ряда экономической динамики), сохранится ив прогнозируемом будущем. В этом смысле прогноз основан на экстраполяции. Экстраполяция, проводимая в будущее, называется перспективной, а в прошлое - ретроспективной.

Прогнозирование методом экстраполяции базируется на следующих предположениях:

  • а) развитие исследуемого явления в целом описывается плавной кривой;
  • б) общая тенденция развития явления в прошлом и настоящем не указывает на серьезные изменения в будущем;
  • в) учет случайности позволяет оценить вероятность отклонения от закономерного развития.

Надежность и точность прогноза зависят от того, насколько близкими к действительности окажутся эти предположения и насколько точно удалось охарактеризовать выявленную в прошлом закономерность.

На основе построенной модели рассчитываются точечные и интервальные прогнозы.

Точечный прогноз для временных моделей получается подстановкой в модель (уравнение тренда) соответствующего значения фактора времени, т.е. t= п + 1, п + 2,..., п + к, где к - период упреждения.

Точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции, имеет малую вероятность. Возникновение соответствующих отклонений объясняется следующими причинами:

  • 1) выбранная для прогнозирования кривая не является единственно возможной для описания тенденции. Можно подобрать такую кривую, которая дает более точные результаты;
  • 2) прогноз осуществляется на основании ограниченного числа исходных данных. Кроме того, каждый исходный уровень обладает еще и случайной компонентой; поэтому и кривая, по которой осуществляется экстраполяция, также будет содержать случайную компоненту;
  • 3) тенденция характеризует движение среднего уровня ряда динамики, поэтому отдельные наблюдения могут от него отклоняться. Если такие отклонения наблюдались в прошлом, то они будут наблюдаться и в будущем.

Интервальные прогнозы строятся на основе точечных прогнозов. Доверительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значение прогнозируемого показателя. Ширина интервала зависит от качества модели (т.е. степени ее близости к фактическим данным), числа наблюдений, горизонта прогнозирования, выбранного пользователем уровня вероятности и других факторов.

При построении доверительного интервала прогноза рассчитывается величина U(k), которая для линейной модели имеет вид

где о е - стандартная ошибка (среднеквадратическое отклонение от линии тренда); п-р - число степеней свободы (для линейной модели у = a Q + a { t количество параметров р = 2).

Коэффициент / является табличным значением ^-статистики Стьюдента при заданном уровне значимости и числе наблюдений. (Примечание. Табличное значение t можно получить с помощью функции Excel стьюдраспобр.)

Для других моделей величина Щк) рассчитывается аналогичным образом, но имеет более громоздкий вид. Как видно из формулы (3.5.21), величина U(k) зависит прямо пропорционально от точности модели коэффициента доверительной вероятности / , степени углубления в будущее на к шагов вперед, т.е. на момент t=п + к, и обратно пропорциональна объему наблюдений.

Доверительный интервал прогноза будет иметь следующие границы:

Если построенная модель адекватна, то с выбранной пользователем вероятностью можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадает в интервал, образованный верхней и нижней границами.

После получения прогнозных оценок необходимо убедиться в их разумности и непротиворечивости оценкам, полученным иным способом.

Пример 3.5.4. Финансовый директор АО «Веста» рассматривает целесообразность ежемесячного финансирования инвестиционного проекта со следующими объемами нетто-платежей, тыс. руб.:

  • 1. Определить линейную модель зависимости объемов платежей от сроков (времени).
  • 2. Оценить качество (т.е. адекватность и точность) построенной модели на основе исследования:
    • а) случайности остаточной компоненты по критерию «пиков»;
    • б) независимости уровней ряда остатков по ^w-критерию (в качестве критических значений использовать уровни d x = 1,08 и d 2 = 1,36) и по первому коэффициенту автокорреляции, критический уровень которого г(1) = 0,36;
    • в) нормальности распределения остаточной компоненты по /^-критерию с критическими уровнями 2,7-3,7;
    • г) средней по модулю относительной ошибки.
  • 3. Определить размеры платежей на три последующих месяца (построить точечный и интервальный прогнозы на три шага вперед (при уровне значимости 0,1), отобразить на графике фактические данные, результаты расчетов и прогнозирования).

Оценить целесообразность финансирования этого проекта, если в следующем квартале на эти цели фирма может выделить только 120 тыс. руб.

  • 1. Построение модели
  • 1) Оценка параметров модели с помощью надстройки Excel Анализ данных. Построим линейную модель регрессии Y от /. Для проведения регрессионного анализа выполните следующие действия:
    • ? Выберите команду Сервис => Анализ данных.
    • ? В диалоговом окне Анализ данных выберите инструмент Регрессия, а затем нажмите кнопку ок.
    • ? В диалоговом окне Регрессия в поле Входной интервал У введите адрес одного диапазона ячеек, который представляет зависимую переменную. В поле Входной интервал X введите адрес диапазона, который содержит значения независимой переменной t. Если выделены и заголовки столбцов, установите флажок Метки в первой строке.
    • ? Выберите параметры вывода (в данном примере - Новая рабочая книга).
    • ? В поле График подбора поставьте флажок.
    • ? В поле Остатки поставьте необходимые флажки и нажмите кнопку ОК.

Результат регрессионного анализа будет получен в виде, приведенном на рис. 3.5.11 и 3.5.12.

Рис. 3.5.11.

Второй столбец на рис. 3.5.11 содержит коэффициенты уравнения регрессии а 0 , a v

Кривая роста зависимости объемов платежей от сроков (времени) имеет вид

2) Оценка параметров модели «вручную». В табл. 3.5.8 приведены промежуточные расчеты параметров линейной модели по формулам (3.5.16). В результате расчетов получаем те же значения:


Рис. 3.5.12.

Таблица 3.5.8

y t

(t-T)(y,-y)

у, =a 0 + a x t

Иногда для проверки расчетов полезно проверить введенные формулы. Для этого следует выбрать команду Сервис => Параметры и поставить флажок в окне формулы (рис. 3.5.13).


Рис. 3.5.13.

После этого на листе Excel расчетные значения будут заменены соответствующими формулами и функциями (табл. 3.5.9).

  • 2. Оценка качества модели
  • 1) Для оценки адекватности построенных моделей исследуются свойства остаточной компоненты, т.е. расхождения уровней, рассчитанных по модели, и фактических наблюдений (табл. 3.5.10).

При проверке независимости (отсутствияавтокорреляции) определяется отсутствие в ряде остатков систематической составляющей, например, с помощью ^w-критерия Дарбина - Уотсона по формуле (3.4.8):

0t-T)(y t -y )

9t= а о + a x t

=$С$18 + $С$16*А2

=(АЗ - $А$14)

=(ВЗ - $В$14)

=$С$18 + $С$16*АЗ

=$С$18 + $С$16*А4

=$С$18 + $С$16*А5

=$С$18 + $С$16*А6

=$С$18 + $С$16*А7

=$С$18 + $С$16*А8

=$С$18 + $С$16*А9

=(А10 - $А$14)

=(В10 - $В$14)

=$С$18 + $С$16*А10

=$С$18 + $С$16*А11

=(А12 - $А$14)

=(В12 - $В$14)

=$С$18 + $С$16*А12

=$С$18 + $С$16*А13

СРЗНАЧ(Е2:Е13)

Номер

наблюдения

Точки

поворота

е]

( е Г е,-) 2

Так как dw" = 1,88 попало в интервал от d 2 до 2, то по данному критерию можно сделать вывод о выполнении свойства независимости (см. табл. 3.4.1). Это означает, что в ряде динамики не имеется автокорреляции, следовательно, модель по этому критерию адекватна.

Проверку случайности уровней ряда остатков проведем на основе критерия поворотных точек [см. формулу (3.5.18)]. Количество поворотных точекр при п = 12 равно 5 (рис. 3.5.14):

Неравенство выполняется (5 > 4). Следовательно, свойство случайности выполняется. Модель по этому критерию адекватна.

Соответствие ряда остатков нормальному закону распределения определим с помощью критерия:

где максимальный уровень ряда остатков е тах = 4,962, минимальный уровень ряда остатков e min = -5,283 (см. табл. 3.5.10), а среднеквадратическое отклонение


Рис. 3.5.14.

Получаем

Расчетное значение попадает в интервал (2,7-3,7), следовательно, выполняется свойство нормальности распределения. Модель по этому критерию адекватна.

Проверка равенства нулю математического ожидания уровней ряда остатков. В нашем случае ё = 0, поэтому гипотеза о равенстве математического ожидания значений остаточного ряда нулю выполняется.

Данные анализа ряда остатков приведены в табл. 3.5.11.

2) Для оценки точности модели вычислим среднюю относительную ошибку аппроксимации Е оти (табл. 3.5.12).

Получаем

Вывод: - хороший уровень точности модели.

Проверяемое

свойство

Используемая

статистика

Граница

Вывод

Наименова

Значение

верх

Независимость

^-критерий Дарбина - Уотсона

dw = 2,12 dw" = 4-2,12 = = 1,88

Адекватна

Случайность

Критерий

(поворотных

Адекватна

Нормальность

/^-критерий

Адекватна

Среднее е,= 0

/-статистика

Стьюдента

Адекватна

Вывод: модель статистически адекватна

Таблица 3.5.12

Номер

наблю

дения

Номер

наблю

дения

3. Построение точечного и интервального прогнозов на три шага вперед

Для вычисления точечного прогноза в построенную модель подставляем соответствующие значения фактора t = n + к:

Для построения интервального прогноза рассчитаем доверительный интервал. При уровне значимости а = 0,1 доверительная вероятность равна 90%, а критерий Стьюдента при v = п - 2 = 10 равен 1,812. Ширину доверительного интервала вычислим по формуле (3.5.21):

где (можно взять из протокола регрессионного анализа), / = 1,812 (табличное значение можно получить в Excel с помощью функции стьюдраспобр), Т = 6,5,

(находим из табл. 3.5.8);

Таблица 3.5.13

Прогноз

Верхняя граница

Нижняя граница

U( 1) = 6,80

Щ2) = 7,04

Ответ. Модель имеет вид Y(t) = 38,23 + 1,81/. Размеры платежей составят 61,77; 63,58; 65,40 тыс. руб. Следовательно, денежных средств в объеме 120 тыс. руб. на финансирование этого инвеста-


Рис. 3.5.15.

ционного проекта на три последующих месяца будет недостаточно, поэтому нужно либо изыскать дополнительные средства, либо отказаться от этого проекта.

Одной из центральных задач эконометрического моделирования является предсказание (прогнозирование) значений зависимой переменной при определенных значениях объясняющих переменных при определенных значениях объясняющих переменных. Здесь возможен двоякий подход: либо предсказать условное математическое ожидание зависимой переменной (предсказание среднего значения ), либо прогнозировать некоторое конкретное значение зависимой переменной (предсказание конкретного значения ).

Замечание. Некоторые авторы различают такие понятия, как прогнозирование и предсказание. Если значение объясняющей переменной X известно точно, то оценивание зависимой переменной Y называется предсказанием . Если же значение объясняющей переменной X неизвестно точно, то говорят, что делается прогноз значения Y . Такая ситуация характерна для временных рядов. В данном случае мы не будем различать предсказание и прогноз.

Различают точечное и интервальное прогнозирование. В первом случае оценка – некоторое число, во втором – интервал, в котором находится истинное значение зависимой переменной с заданным уровнем значимости.

а) Предсказание среднего значения . Пусть построено уравнение парной регрессии , на основе которого необходимо предсказать условное математическое ожидание . В данном случае значение является точечной оценкой . Тогда естественно возникает вопрос, как сильно может отклониться модельное значение , рассчитанное по эмпирическому уравнению, от соответствующего условного математического ожидания. Ответ на этот вопрос даётся на основе интервальных оценок, построенных с заданным уровнем значимости a при любом конкретном значении x p объясняющей переменной.

Запишем эмпирическое уравнение регрессии в виде

Здесь выделены две независимые составляющие: средняя и приращение . Отсюда вытекает, что дисперсия будет равна

Из теории выборки известно, что

Используя в качестве оценки s 2 остаточную дисперсию S 2 , получим



Дисперсия коэффициента регрессии, как уже было показано

Подставляя найденные дисперсии в (5.41), получим

. (5.56)

Таким образом, формула расчета стандартной ошибки предсказываемого по линии регрессии среднего значения Y имеет вид

. (5.57)

Величина стандартной ошибки , как видно из формулы, достигает минимума при , и возрастает по мере удаления от в любом направлении. Иными словами, больше разность между и , тем больше ошибка с которой предсказывается среднее значение y для заданного значения x p . Можно ожидать наилучшие результаты прогноза, если значения x p находятся в центре области наблюдений X и нельзя ожидать хороших результатов прогноза по мере удаления от .

Случайная величина

(5.58)

имеет распределение Стьюдента с числом степеней свободы n=n –2 (в рамках нормальной классической модели ). Следовательно, по таблице критических точек распределения Стьюдента по требуемому уровню значимости a и числу степеней свободы n=n –2 можно определить критическую точку , удовлетворяющую условию

.

С учетом (5.46) имеем:

.

Отсюда, после некоторых алгебраических преобразований, получим, что доверительный интервал для имеет вид:

, (5.59)

где предельная ошибка D p имеет вид

. (5.60)

Из формул (5.57) и (5.60) видно, что величина (длина) доверительного интервала зависит от значения объясняющей переменной x p : при она минимальна, а по мере удаления x p от величина доверительного интервала увеличивается (рис. 5.4). Таким образом, прогноз значений зависимой переменной Y по уравнению регрессии оправдан, если значение x p объясняющей переменной X не выходит за диапазон ее значений по выборке (причем более точный, чем ближе x p к ). Другими словами, экстраполяция кривой регрессии, т.е. её использование вне пределов обследованного диапазона значений объясняющей переменной (даже если она оправдана для рассматриваемой переменной исходя из смысла решаемой задачи) может привести к значительным погрешностям .

б) Предсказание индивидуальных значений зависимой переменной . На практике иногда более важно знать дисперсию Y , чем ее средние значения или доверительные интервалы для условных математических ожиданий. Это связано с тем, что фактические значения Y варьируют около среднего значения . Индивидуальные значения Y могут отклоняться от на величину случайной ошибки e, дисперсия которой оценивается как остаточная дисперсия на одну степень свободы S 2 . Поэтому ошибка предсказываемого индивидуального значения Y должны включать не только стандартную ошибку , но и случайную ошибку S . Это позволяет определять допустимые границы для конкретного значения Y .

Пусть нас интересует некоторое возможное значение y 0 переменной Y при определенном значении x p объясняющей переменной X . Предсказанное по уравнению регрессии значение Y при X =x p составляет y p . Если рассматривать значение y 0 как случайную величину Y 0 , а y p – как случайную величину Y p , то можно отметить, что

,

.

Случайные величины Y 0 и Y p являются независимыми, а следовательно, случайная величина U = Y 0 –Y p имеет нормальное распределение с

И . (5.61)

Используя в качестве s 2 остаточную дисперсию S 2 , получим формулу расчета стандартной ошибки предсказываемого по линии регрессии индивидуального значения Y :

. (5.63)

Случайная величина

(5.64)

имеет распределение Стьюдента с числом степеней свободы k =n –2. На основании этого можно построить доверительный интервал для индивидуальных значений Y p :

, (5.65)

где предельная ошибка D u имеет вид

. (5.66)

Заметим, что данный интервал шире доверительного интервала для условного математического ожидания (см. рис. 5.4).

Пример 5.5. По данным примеров 5.1-5.3 рассчитать 95%-ый доверительный интервал для условного математического ожидания и индивидуального значения при x p =160.

Решение. В примере 5.1 было найдено . Воспользовавшись формулой (5.48), найдем предельную ошибку для условного математического ожидания

Тогда доверительный интервал для среднего значения на уровне значимости a=0,05 будет иметь вид

Другими словами, среднее потребление при доходе 160 с вероятностью 0,95 будет находиться в интервале (149,8; 156,6).

Рассчитаем границы интервала, в котором будет сосредоточено не менее 95% возможных объёмов потребления при уровне дохода x p =160, т.е. доверительный интервал для индивидуального значения . Найдем предельную ошибку для индивидуального значения

Тогда интервал, в котором будут находиться, по крайней мере, 95% индивидуальных объёмов потребления при доходе x p =160, имеет вид

Нетрудно заметить, что он включает в себя доверительный интервал для условного среднего потребления. â

ПРИМЕРЫ

Пример 5.65. По территориям региона приводятся данные за 199X г. (таб. 1.1).

2. Построить линейное уравнение парной регрессии y на x и оценить статистическую значимость параметров регрессии. Сделать рисунок.

3. Оценить качество уравнения регрессии при помощи коэффициента детерминации. Проверить качество уравнения регрессии при помощи F -критерия Фишера.

4. Выполнить прогноз заработной платы y при прогнозном значении среднедушевого прожиточного минимума x , составляющем 107% от среднего уровня. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал для уровня значимости a=0,05. Сделать выводы.

Решение

1. Для определения степени тесноты связи обычно используют коэффициент корреляции :

где , – выборочные дисперсии переменных x и y . Для расчета коэффициента корреляции строим расчетную таблицу (табл. 5.4):

Таблица 5.4

x y xy x 2 y 2 e 2
148,77 -15,77 248,70
152,45 -4,45 19,82
157,05 -23,05 531,48
149,69 4,31 18,57
158,89 3,11 9,64
174,54 20,46 418,52
138,65 0,35 0,13
157,97 0,03 0,00
144,17 7,83 61,34
157,05 4,95 24,46
146,93 12,07 145,70
182,83 -9,83 96,55
Итого 1574,92
Среднее значение 85,58 155,75 13484,00 7492,25 24531,42

По данным таблицы находим:

, , , ,

, , , ,

, .

Таким образом, между заработной платой (y) и среднедушевым прожиточным минимумом (x) существует прямая достаточно сильная корреляционная зависимость .

Для оценки статистической значимости коэффициента корреляции рассчитаем двухсторонний t-критерий Стьюдента :

который имеет распределение Стьюдента с k =n –2 и уровнем значимости a. В нашем случае

и .

Поскольку , то коэффициент корреляции существенно отличается от нуля.

Для значимого коэффициента можно построить доверительный интервал , который с заданной вероятностью содержит неизвестный генеральный коэффициент корреляции. Для построения интервальной оценки (для малых выборок n <30), используют z-преобразование Фишера :

Распределение z уже при небольших n является приближенным нормальным распределением с математическим ожиданием и дисперсией . Поэтому вначале строят доверительный интервал для M[z ], а затем делают обратное z -преобразование. Применяя z -преобразование для найденного коэффициента корреляции, получим

Доверительный интервал для M(z ) будет иметь вид

,

где t g находится с помощью функции Лапласа F(t g)=g/2. Для g=0,95 имеем t g =1,96. Тогда

или . Обратное z -преобразование осуществляется по формуле

В результате находим

.

В указанных границах на уровне значимости 0,05 (с надежностью 0,95) заключен генеральный коэффициент корреляции r.

2. Таким образом, между переменными x и y имеет существенная корреляционная зависимость. Будем считать, что эта зависимость является линейной. Модель парной линейной регрессии имеет вид

,

где y – зависимая переменная (результативный признак), x – независимая (объясняющая) переменная, e – случайные отклонения, b 0 и b 1 – параметры регрессии. По выборке ограниченного объема можно построить эмпирическое уравнение регрессии:

где b 0 и b 1 – эмпирические коэффициенты регрессии. Для оценки параметров регрессии обычно используют метод наименьших квадратов (МНК ). В соответствие с МНК, сумма квадратов отклонений фактических значений зависимой переменной y от теоретических была минимальной:

,

где отклонения y i от оцененной линии регрессии. Необходимым условием существования минимума функции двух переменных является равенство нулю ее частных производных по неизвестным параметрам b 0 и b 1 . В результате получаем систему нормальных уравнений:

Решая эту систему, найдем

, .

По данным таблицы находим

Получено уравнение регрессии:

Параметр b 1 называется коэффициентом регрессии . Его величина показывает среднее изменение результата с изменением фактора на одну единицу. В рассматриваемом случае, с увеличением среднедушевого минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,92 руб .

,

где F подчиняется распределению Фишера с уровнем значимости a и степенями свободы k 1 =1 и k 2 =n –2. В нашем случае

.

Поскольку критическое значение критерия равно

и , то признается статистическая значимость построенного уравнения регрессии. Отметим, что для линейной модели F - и t -критерии связаны равенством , что можно использовать для проверки расчётов.

4. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Прогнозное значение y p определяется путем подстановки в уравнение регрессии (1.16) соответствующего (прогнозного) значения x p

ЛЕКЦИЯ 5 99

§5.2. Анализ точности оценок коэффициентов регрессии 99

5.2.1. Оценка дисперсии случайного отклонения 99

5.2.2. Проверка гипотез относительно коэффициентов регрессии 100

5.2.3. Интервальные оценка коэффициентов регрессии 103

§5.3. Показатели качества уравнения регрессии 104

5.3.1. Коэффициент детерминации 104

5.3.2. Проверка общего качества уравнения регрессии: F-тест 106

5.3.3. Проверка общего качества уравнения регрессии: t-тест 108

§5.4. Интервалы прогноза по уравнению регрессии 108

Прогнозирование экономических показателей на основе трендовых моделей, как и большинство других методов экономического прогнозирования, основано на идее экстраполяции. Как уже сказано выше, под экстраполяцией обычно понимают распространение закономерностей, связей и соотношений, действующих в изучаемом периоде, за его пределы. В более широком смысле слова ее рассматривают как получение представлений о будущем на основе информации, относящейся к прошлому и настоящему. В процессе построения прогнозных моделей в их структуру иногда закладываются элементы будущего предполагаемого состояния объекта или явления, но в целом эти модели отражают закономерности, наблюдаемые в прошлом и настоящем, поэтому достоверный прогноз возможен лишь относительно таких объектов и явлений, которые в значительной степени детерминируются прошлым и настоящим.

Существуют две основные формы детерминации: внутренняя и внешняя. Внутренняя детерминация, или самодетерминация, более устойчива, ее проще идентифицировать с использованием экономико-математических моделей. Внешняя детерминация определяется большим числом факторов, поэтому учесть их все практически невозможно. Если некоторые методы моделирования, например адаптивные, отражают общее совокупное влияние на экономическую систему внешних факторов, т.е. отражают внешнюю детерминацию, то методы, базирующиеся на использовании трендовых моделей экономических процессов, представленных одномерными временными рядами, отражают внутреннюю детерминацию объектов и явлений.

При экстраполяционном прогнозировании экономической динамики на основе временных рядов с использованием трендовых моделей выполняются следующие основные этапы:

  • 1) предварительный анализ данных;
  • 2) формирование набора моделей (например, набора кривых роста), называемых функциями-кандидатами;
  • 3) численное оценивание параметров моделей;
  • 4) определение адекватности моделей;
  • 5) оценка точности адекватных моделей;
  • 6) выбор лучшей модели;
  • 7) получение точечного и интервального прогнозов;
  • 8) верификация прогноза.

Порядок реализации первых шести этапов из перечисленных описан в предыдущих параграфах данной главы. Рассмотрим более подробно два заключительных этапа.

Прогноз на основании трендовых моделей (кривых роста) содержит два элемента: точечный и интервальный прогнозы. Точечный прогноз – это прогноз, которым называется единственное значение прогнозируемого показателя. Это значение определяется подстановкой в уравнение выбранной кривой роста величины времени t, соответствующей периоду упреждения: t = n + 1; t = n + 2 и т.д. Такой прогноз называется точечным, так как на графике его можно изобразить в виде точки.

Очевидно, что точное совпадение фактических данных в будущем и прогностических точечных оценок маловероятно. Поэтому точечный прогноз должен сопровождаться двусторонними границами, т.е. указанием интервала значений, в котором с достаточной долей уверенности можно ожидать появления прогнозируемой величины. Установление такого интервала называется интервальным прогнозом.

Интервальный прогноз на базе трендовых моделей осуществляется путем расчета доверительного интервала – такого интервала, в котором с определенной вероятностью можно ожидать появления фактического значения прогнозируемого экономического показателя. Расчет доверительных интервалов при прогнозировании с использованием кривых роста опирается на выводы и формулы теории регрессий. Перенесение выводов теории регрессий на временные экономические ряды не совсем правомерно, так как динамические ряды, как выше уже отмечали, отличаются от статистических совокупностей. Поэтому к оцениванию доверительных интервалов для кривых роста следует подходить с известной долей осторожности.

Методы, разработанные для статистических совокупностей, позволяют определить доверительный интервал, зависящий от стандартной ошибки оценки прогнозируемого показателя, от времени упреждения прогноза, от количества уровней во временном ряду и от уровня значимости (ошибки) прогноза.

Стандартная (средняя квадратическая) ошибка оценки прогнозируемого показателя определяется по формуле

(5.17)

– фактическое значение уровня временного ряда для времени

– расчетная оценка соответствующего показателя по модели (например, по уравнению кривой роста);

п – количество уровней в исходном ряду;

k – число параметров модели.

В случае прямолинейного тренда для расчета доверительного интервала можно использовать аналогичную формулу для парной регрессии, таким образом, доверительный интервал прогноза в этом случае будет иметь вид

(5.18)

L – период упреждения;

– точечный прогноз по модели на (п + L )-й момент времени;

п – количество наблюдений во временном ряду;

– стандартная ошибка оценки прогнозируемого показателя, рассчитанная по ранее приведенной формуле для числа параметров модели, равного двум;

– табличное значение критерия Стьюдента для уровня значимости а и для числа степеней свободы, равного п-2.

Если выражение

обозначить через К , то формула для доверительного интервала примет вид

Значения величины К для оценки доверительных интервалов прогноза относительно линейного тренда табулированы. Фрагмент такой таблицы для уровня значимости а = 0,20 представлен для иллюстрации в табл. 5.4.

Таблица 5.4

Число уровней в ряду (n )

Период упреждения L

Иногда для расчета доверительных интервалов прогноза относительно линейного тренда применяют приведенную выше формулу в несколько преобразованном виде:

(5.20)

Здесь t – порядковый номер уровня ряда (t =1, 2, ..., п ); – время, для которого делается прогноз; – время, соответствующее середине периода наблюдений для исходного ряда, например ; суммирование ведется по всем наблюдениям.

Эту формулу можно упростить, если, как часто делается на практике, перенести начало отсчета времени на середину периода наблюдений ():

(5.21)

Формула для расчета доверительных интервалов прогноза относительно тренда, имеющего вид полинома второго или третьего порядка, выглядит следующим образом:

Аналогично вычисляются доверительные интервалы для экспоненциальной кривой роста, а также для кривых роста, имеющих асимптоту (модифицированная экспонента, кривая Гомперца, логистическая кривая), если значение асимптоты известно.

Таким образом, формулы расчета доверительного интервала для трендовых моделей разного класса различны, но каждая из них отражает динамический аспект прогнозирования, т.е. увеличение неопределенности прогнозируемого процесса с ростом периода упреждения проявляется в постоянном расширении доверительного интервала.

Несмотря на громоздкость некоторых формул, расчет точечных и интервальных прогнозов на основе трендовых моделей в форме кривых роста технически является достаточно простой процедурой. Однако не следует обольщаться технической простотой процедуры экстраполяции и пытаться заглянуть слишком далеко, это неизбежно приведет к грубым ошибкам. Оптимальная длина периода упреждения определяется отдельно для каждого экономического явления с учетом статистической колеблемости изучаемых данных на основе содержательного суждения о стабильности явления. Эта длина, как правило, не превышает для рядов годовых наблюдений одной трети объема данных, а для квартальных и месячных рядов – двух лет.

При выравнивании временных рядов с использованием кривых роста приходится решать вопрос о том, какой длины должен быть ряд, выбираемый для прогнозирования. Очевидно, что если период ряда экономической динамики слишком короткий, можно не обнаружить тенденцию его развития. С другой стороны, очень длительный временной ряд может охватывать периоды с различными трендами и его описание с помощью одной кривой роста не даст положительных результатов. Поэтому рекомендуется поступать следующим образом. Если нет никаких соображений качественного порядка, следует выбирать возможно больший промежуток времени.

Если развитие обнаруживает циклический характер, следует брать период от середины первого до середины последнего периода цикла. Если ряд охватывает периоды с разными трендами, лучше сократить ряд, отбросив наиболее ранние уровни, которые относятся к периоду с иной тенденцией развития.

При экстраполяционном прогнозировании экономической динамики с использованием трендовых моделей весьма важным является заключительный этап – верификация прогноза . Верификация любых дескриптивных моделей, к которым относятся трендовые модели, сводится к сопоставлению расчетных результатов по модели с соответствующими данными действительности – массовыми фактами и закономерностями экономического развития. Верификация прогнозной модели представляет собой совокупность критериев, способов и процедур, позволяющих на основе многостороннего анализа оценивать качество получаемого прогноза. Однако чаще всего на этапе верификации в большей степени осуществляется оценка метода прогнозирования, с помощью которого был получен результат, чем оценка качества самого результата. Это связано с тем, что до сих нор не найдено эффективного подхода к оценке качества прогноза до его реализации.

Даже в тех случаях, когда прогноз не оправдался, нельзя категорически утверждать, что он был бесполезен, поскольку пользователь, если он хотя бы частично контролирует ход событий и может воздействовать на экономический процесс, может использовать прогнозную информацию желаемым для себя образом. Так, получив прогноз событий, определяющих нежелательное направление перспективного развития, пользователь может принять меры, чтобы прогноз не оправдался; такой прогноз называется само- деструктивным. Если прогноз предсказал ход событий, устраивающий пользователя, то он может использовать свои возможности для увеличения вероятности правильного прогноза; подобный прогноз называется саморегулирующим. Таким образом, показателем ценности прогноза является не только его достоверность, но и полезность для пользователей.

О точности прогноза принято судить по величине ошибки прогноза – разности между фактическим значением исследуемого показателя и его прогнозным значением. Очевидно, что определить указанную разность можно лишь в двух случаях: либо если период упреждения уже окончился и известно фактическое значение прогнозируемого показателя (известна его реализация), либо если прогнозирование осуществлялось для некоторого момента времени в прошлом, для которого известны фактические данные. Во втором из названных случаев информация делится на две части. Часть, охватывающая более ранние данные, служит для оценивания параметров прогностической кривой роста, другая, более поздняя, рассматривается как реализация прогноза. Полученные таким образом ошибки прогноза в какой-то мере характеризуют точность применяемой методики прогнозирования.

Проверка точности одного прогноза недостаточна для оценки качества прогнозирования, так как она может быть результатом случайного совпадения. Наиболее простой мерой качества прогнозов при условии, что имеются данные об их реализации, является отношение числа случаев, когда фактическая реализация охватывалась интервальным прогнозом, к общему числу прогнозов. Данную меру качества прогнозов k можно вычислить по формуле

где р – число прогнозов, подтвержденных фактическими данными;

q – число прогнозов, не подтвержденных фактическими данными.

Однако в практической работе проблему качества прогнозов чаще приходится решать, когда период упреждения еще не закончился и фактическое значение прогнозируемого показателя неизвестно. В этом случае более точной считается модель, дающая более узкие доверительные интервалы прогноза. На практике не всегда удается сразу построить достаточно хорошую модель прогнозирования, поэтому описанные в данной главе этапы построения трендовых моделей экономической динамики выполняются неоднократно.

Рассмотрим пример расчета точечного и интервального прогноза на основе трендовых моделей, используя данные задачи, решаемой в предыдущем параграфе данной главы.

Пример 5.2. Пусть для временного ряда, представленного в табл. 5.3, требуется дать прогноз на два шага вперед (t = 10 и t = 11) на основе адекватной линейной модели

Решение. Точечные прогнозы получим, подставляя в уравнение модели значения t =10 и t =11:

При расчете доверительных интервалов прогноза учтем, что в процессе решения упомянутой задачи предыдущего параграфа было найдено значение средней квадратической ошибки оценки прогнозируемого показателя , а значения величины

К в формуле (5.19) для ряда из девяти уровней можно получить при уровне значимости α = 0,20 из табл. 5.4 путем линейной интерполяции приведенных значений для п = 7 и п = 10: для t = 10 (L = 1) К = 1,77; для t = 11 (L = 2 ) К = 1,88. Результаты расчета по формуле (5.19) представлены в табл. 5.5.

Таблица 5.5

Так как модель, на основе которой осуществлялся прогноз, признана адекватной, то с принятым уровнем значимости 0,20, другими словами, с доверительной вероятностью 0,80 (или 80%) можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадет в интервал, образованный нижней и верхней границами.

Выбор редакции
СИТУАЦИЯ: Работник, занятый во вредных условиях труда, был направлен на обязательный периодический медицинский осмотр. Но в назначенное...

Федеральный закон № 402-ФЗ от 06.12.2011 в статье 9 предусматривает для коммерческих предприятий свободный выбор форм первичной...

Продолжительность рабочего времени медицинских работников строго контролируется Трудовым кодексом. Установлены определённые часы, на...

Сведений о семье в биографии политолога Сергея Михеева крайне мало. Зато карьерные достижения помогли снискать, как поклонников...
Президент Института Ближнего Востока Евгений Сатановский в ходе беседы с журналистами во время представления своей книги «Диалоги»,...
В истории Новосибирской области - история нашей страны. Все эпохи здесь… И радующие археологов древние поселения, и первые остроги, и...
ИСТОЧНИК: http://portalus.ru (c) Н.Л. ШЕХОВСКАЯ, (c) Более полувека назад, предвидя суть грядущих преобразований в России,...
30 января опубликован Приказ налоговой службы No ММВ-7-11/19@ от 17 января 2018 г. На основании этого с 10 февраля 2-НДФЛ 2018 заполняют...
В настоящее время страхователи обязаны сдавать в Пенсионный фонд следующую отчетность:Расчет по форме РСВ-1 – ежеквартальный расчет по...