В каких случаях требуется знание коэффициента стьюдента. Парный t-критерий стьюдента - метод оценки значимости различий повторных измерений


/-Критерий Стьюдента относится к параметрическим, следовательно, его использование возможно только в том случае, когда результаты эксперимента представлены в виде измерений по двум последним шкалам -- интервальной и отношений . Проиллюстрируем возможности критерия Стьюдента на конкретном примере.

Предположим, вам необходимо выяснить эффективность обучения стрельбе по определенной методике. С этой целью проводится сравнительный педагогический эксперимент, где одна группа (экспериментальная), состоящая из 8 человек, занимается по предлагаемой экспериментальной методике, а другая (контрольная) -- по традиционной, общепринятой. Рабочая гипотеза заключается в том, что новая, предлагаемая вами методика окажется более эффективной. Итогом эксперимента является контрольная стрельба из пяти выстрелов, по результатам которых (табл. 6) нужно рассчитать достоверность различий и проверить правильность выдвинутой гипотезы.

Таблица 6

Что же необходимо сделать для расчета достоверности различий по /-критерию Стьюдента?

1. Вычислить средние арифметические величины X для каждой группы в отдельности по следующей формуле:

где Xt -- значение отдельного измерения; я -- общее число измерений в группе.

Проставив в формулу фактические значения из табл. 6, получим:

Сопоставление среднеарифметических величин доказывает, что в экспериментально^ группе данная величина (X, = 35) выше, чем в контрольной (Хк = 27). Однако для окончательного утверждения того, что занимающиеся экспериментальной группы научились стрелять лучше, следует убедиться в статистической достоверности различий (/) между рассчитанными среднеарифметическими значениями.

2. В обеих группах вычислить стандартное отклонение (5) по следующей формуле:

:де Ximax -- наибольший показатель; Ximm -- наименьший показатель; К -- табличный коэффициент. Порядок вычисления стандартного отклонения (5): -- определить Xitrax в обеих группах; -- определить Ximia в этих группах; -- определить число измерений в каждой группе (л); -- найти по специальной таблице (приложение 12) значение коэффициента К, который соответствует числу измерений в группе (8). Для этого в левом крайнем столбце под индексом (и) находим цифру 0, так как количество измерений в нашем примере меньше 10, а в верхней строке -- цифру 8; на пересечении этих строк -- 2,85, что соответствует значению коэффициента.АГпри 8 испыту--- подставить полученные значения в формулу и произвести необходимые вычисления:

3. Вычислить стандартную ошибку среднего арифметического значения (т) по формуле:

Для нашего примера подходит первая формула, так как п < 30. Вычислим для каждой группы значения:

4. Вычислить среднюю ошибку разности по формуле:

5. По специальной таблице (приложение 13) определить досто верность различий. Для этого полученное значение (t) сравнивает ся с граничным при 5 %-ном уровне значимости (t0fi5) ПРИ числе степеней свободы/= пэ + пк - 2, где пэк пк~ общее число индивидуальных результатов соответственно в экспериментальной иконтрольной группах. Если окажется, что полученное в эксперименте t больше граничного значения (/0)о5)> т0 различия между средними арифметическими двух групп считаются достоверными при 50 %-ном уровне значимости, и наоборот, в случае когда полученное t меньше граничного значения t0<05, считается, что раз личия недостоверны и разница в среднеарифметических показателях групп имеет случайный характер. Граничное значение при 5 %-ном уровне значимости (Г0>05) определяется следующим образом:

вычислить число степеней свободы/= 8 + 8 - 2 = 14;

найти по таблице (приложение 13) граничное значение tofi5 при/= 14.

В нашем примере табличное значение tQ<05 = 2,15, сравним его с вычисленным Г, которое равно 1,7, т.е. меньше граничного значения (2,15). Следовательно, различия между полученными в эксперименте средними арифметическими значениями считаются недостоверными, а значит, недостаточно оснований для того, чтобы говорить о том, что одна методика обучения стрельбе оказалась эффективнее другой. В этом случае можно записать: / = 1,7 при/» > 0,05, это означает, что в случае проведения 100 аналогичньгх экспериментов вероятность (р) получения подобных результатов, когда средние арифметические величины экспериментальных групп окажутся выше контрольных, больше 5 %-ного уровня значимости или меньше 95 случаев из 100. Итоговое оформление таблицы с учетом полученных расчетов и с приведением соответствующих параметров может выглядеть следующим образом.

При сравнительно больших числах измерений условно принято считать, что если разница между средними арифметическими показателями равна или больше трех своих ошибок, различия считаются достоверными. В этом случае достоверность различий определяется по следующему уравнению:

Как уже говорилось в начале этого раздела, /-критерий Стью-дента может применяться только в тех случаях, когда измерения сделаны по шкале интервалов и отношений. Однако в педагогических исследованиях нередко возникает потребность определять Достоверность различий между результатами, полученными по Шкале наименований или порядка. В таких случаях используются непараметрические критерии. В отличие от параметрических непараметрические критерии не требуют вычисления определенных параметров полученных результатов (среднего арифметического, стандартного отклонения и т.п.), чем в основном и связаны их названия. Рассмотрим сейчас два непараметрических критерия для определения достоверности различий между независимыми результатами, полученными по шкале порядка и наименований.

В каких случаях можно использовать t-критерий Стьюдента?

Для применения t-критерия Стьюдента необходимо, чтобы исходные данные имели нормальное распределение . В случае применения двухвыборочного критерия для независимых выборок также необходимо соблюдение условия равенства (гомоскедастичности) дисперсий .

При несоблюдении этих условий при сравнении выборочных средних должны использоваться аналогичные методы непараметрической статистики , среди которых наиболее известными являются U-критерий Манна - Уитни (в качестве двухвыборочного критерия для независимых выборок), а также критерий знаков и критерий Вилкоксона (используются в случаях зависимых выборок).

Для сравнения средних величин t-критерий Стьюдента рассчитывается по следующей формуле:

где М 1 - средняя арифметическая первой сравниваемой совокупности (группы), М 2 - средняя арифметическая второй сравниваемой совокупности (группы), m 1 - средняя ошибка первой средней арифметической, m 2 - средняя ошибка второй средней арифметической.

Как интерпретировать значение t-критерия Стьюдента?

Полученное значение t-критерия Стьюдента необходимо правильно интерпретировать. Для этого нам необходимо знать количество исследуемых в каждой группе (n 1 и n 2). Находим число степеней свободы f по следующей формуле:

f = (n 1 + n 2) - 2

После этого определяем критическое значение t-критерия Стьюдента для требуемого уровня значимости (например, p=0,05) и при данном числе степеней свободы f по таблице (см. ниже ).

Сравниваем критическое и рассчитанное значения критерия:

· Если рассчитанное значение t-критерия Стьюдента равно или больше критического, найденного по таблице, делаем вывод о статистической значимости различий между сравниваемыми величинами.

· Если значение рассчитанного t-критерия Стьюдента меньше табличного, значит различия сравниваемых величин статистически не значимы.

Пример расчета t-критерия Стьюдента

Для изучения эффективности нового препарата железа были выбраны две группы пациентов с анемией. В первой группе пациенты в течение двух недель получали новый препарат, а во второй группе - получали плацебо. После этого было проведено измерение уровня гемоглобина в периферической крови. В первой группе средний уровень гемоглобина составил 115,4±1,2 г/л, а во второй - 103,7±2,3 г/л (данные представлены в формате M±m ), сравниваемые совокупности имеют нормальное распределение. При этом численность первой группы составила 34, а второй - 40 пациентов. Необходимо сделать вывод о статистической значимости полученных различий и эффективности нового препарата железа.

Решение: Для оценки значимости различий используем t-критерий Стьюдента, рассчитываемый как разность средних значений, поделенная на сумму квадратов ошибок:

После выполнения расчетов, значение t-критерия оказалось равным 4,51. Находим число степеней свободы как (34 + 40) - 2 = 72. Сравниваем полученное значение t-критерия Стьюдента 4,51 с критическим при р=0,05 значением, указанным в таблице: 1,993. Так как рассчитанное значение критерия больше критического, делаем вывод о том, что наблюдаемые различия статистически значимы (уровень значимости р<0,05).

Распределение Фишера – это распределение случайной величины

где случайные величины Х 1 и Х 2 независимы и имеют распределения хи – квадрат с числом степеней свободы k 1 и k 2 соответственно. При этом пара (k 1 , k 2) – пара «чисел степеней свободы» распределения Фишера, а именно, k 1 – число степеней свободы числителя, а k 2 – число степеней свободы знаменателя. Распределение случайной величины F названо в честь великого английского статистика Р.Фишера (1890-1962), активно использовавшего его в своих работах.

Распределение Фишера используют при проверке гипотез об адекватности модели в регрессионном анализе, о равенстве дисперсий и в других задачах прикладной статистики.

Таблица критических значений Стьюдента.

Начало формы

Число степеней свободы, f Значение t-критерия Стьюдента при p=0.05
12.706
4.303
3.182
2.776
2.571
2.447
2.365
2.306
2.262
2.228
2.201
2.179
2.160
2.145
2.131
2.120
2.110
2.101
2.093
2.086
2.080
2.074
2.069
2.064
2.060
2.056
2.052
2.048
2.045
2.042
2.040
2.037
2.035
2.032
2.030
2.028
2.026
2.024
40-41 2.021
42-43 2.018
44-45 2.015
46-47 2.013
48-49 2.011
50-51 2.009
52-53 2.007
54-55 2.005
56-57 2.003
58-59 2.002
60-61 2.000
62-63 1.999
64-65 1.998
66-67 1.997
68-69 1.995
70-71 1.994
72-73 1.993
74-75 1.993
76-77 1.992
78-79 1.991
80-89 1.990
90-99 1.987
100-119 1.984
120-139 1.980
140-159 1.977
160-179 1.975
180-199 1.973
1.972
1.960

Метод позволяет проверить гипотезу о том, что средние значения двух ге­неральных совокупностей, из которых извлечены сравниваемые зависимые вы­борки, отличаются друг от друга. Допущение зависимости чаще всего значит, что признак измерен на одной и той же выборке дважды, например, до воз­действия и после него. В общем же случае каждому представителю одной вы­борки поставлен в соответствие представитель из другой выборки (они по­парно объединены) так, что два ряда данных положительно коррелируют друг с другом. Более слабые виды зависимости выборок: выборка 1 - мужья, вы­борка 2 - их жены; выборка 1 - годовалые дети, выборка 2 составлена из близнецов детей выборки 1, и т. д.

Проверяемая статистическая гипотеза, как и в предыдущем случае, Н 0: М 1 = М 2 (средние значения в выборках 1 и 2 равны).При ее отклонении принимается альтернативная гипотеза о том, что М 1 больше (меньше) М 2 .

Исходные предположения для статистической проверки:

□ каждому представителю одной выборки (из одной генеральной совокупно­сти) поставлен в соответствие представитель другой выборки (из другой генеральной совокупности);

□ данные двух выборок положительно коррелируют (образуют пары);

□ распределение изучаемого признака и в той и другой выборке соответству­ет нормальному закону.

Структура исходных данных: имеется по два значения изучаемого признака для каждого объекта (для каждой пары).

Ограничения: распределения признака и в той, и в другой выборке должно суще­ственно не отличаться от нормального; данные двух измерений, соответству­ющих той и другой выборке, положительно коррелируют.

Альтернативы: критерий Т-Вилкоксона, если распределение хотя бы для одной выборки существенно отличается от нормального; критерий t-Стьюдента для независимых выборок - если данные для двух выборок не корре­лируют положительно.

Формула для эмпирического значения критерия t-Стьюдента отражает тот факт, что единицей анализа различий является разность (сдвиг) значений при­знака для каждой пары наблюдений. Соответственно, для каждой из N пар значений признака сначала вычисляется разность d i = х 1 i - x 2 i .

(3) где M d – средняя разность значений; σ d – стандартное отклонение разностей.

Пример расчета:

Предположим, в ходе проверки эффективности тренинга каждому из 8 членов груп­пы задавался вопрос «Насколько часто твое мнение совпадаете мнением группы?» - дважды, до и после тренинга. Для ответов использовалась 10-балльная шкала: 1 - никогда, 5 - в половине случаев, 10 - всегда. Проверялась гипотеза о том, что в результате тренинга самооценка конформизма (стремления быть как другие в группе) участников возрастет (α = 0,05). Составим таблицу для промежуточных вычислений (таблица 3).

Таблица 3

Среднее арифметической для разности M d = (-6)/8= -0,75. Вычтем это значение из каждого d (предпоследний столбец таблицы).

Формула для стандартного отклонения отличается лишь тем, что вместо Х в ней фигурирует d.Подставляем все нужные значения, получаем

σ d = = 0,886.

Ш а г 1. Вычисляем эмпирическое значение критерия по формуле (3): средняя раз­ность M d = -0,75; стандартное отклонение σ d = 0,886; t э = 2,39; df = 7.

Ш а г 2. Определяем по таблице критических значений критерия t-Стьюдента р-уровень значимости. Для df = 7 эмпирическое значение находится меж­ду критическими для р = 0,05 и р - 0,01. Следовательно, р < 0,05.

df Р
0,05 0,01 0,001
2,365 3,499 5,408

Ш а г 3. Принимаем статистическое решение и формулируем вывод. Статистичес­кая гипотеза о равенстве средних значений отклоняется. Вывод: показатель само­оценки конформизма участников после тренинга увеличился статистически досто­верно (на уровне значимости р < 0,05).

К параметрическим методам относится и сравнение дисперсий двух выборок по критерию F-Фишера. Иногда этот метод приводит к ценным содержатель­ным выводам, а в случае сравнения средних для независимых выборок срав­нение дисперсий является обязательной процедурой.

Для вычисления F эмп нужно найти отношение дисперсий двух выборок, причем так, чтобы большая по величине дисперсия находилась бы в числителе, а меньшая знаменателе.

Сравнение дисперсий . Метод позволяет проверить гипотезу о том, что дисперсии двух генераль­ных совокупностей, из которых извлечены сравниваемые выборки, отлича­ются друг от друга. Проверяемая статистическая гипотеза Н 0: σ 1 2 = σ 2 2 (дисперсия в выборке 1 равна дисперсии в выборке 2). При ее отклонении принимается альтернативная гипотеза о том, что одна дисперсия больше другой.

Исходные предположения : две выборки извлекаются случайно из разных ге­неральных совокупностей с нормальным распределением изучаемого признака.

Структура исходных данных: изучаемый признак измерен у объектов (ис­пытуемых), каждый из которых принадлежит к одной из двух сравниваемых выборок.

Ограничения: распределения признака и в той, и в другой выборке суще­ственно не отличаются от нормального.

Альтернатива методу: критерий Ливена (Levene"sTest), применение которого не требует проверки предположения о нормальности (используется в программе SPSS).

Формула для эмпирического значения критерия F-Фишера:

(4)

где σ 1 2 - большая дисперсия, a σ 2 2- меньшая дисперсия. Так как заранее не известно, какая дисперсия больше, то для определения р-уровня применяется Таблица критических значений для ненаправленных альтернатив. Если F э > F Kp для соответствующего числа степеней свободы, то р < 0,05 и статистическую гипотезу о равенстве дисперсий можно отклонить (для α = 0,05).

Пример расчета:

Детям давались обычные арифметические задания, после чего одной случайно выбранной половине учащихся сообщали, что они не выдержали испытания, а ос­тальным - обратное. Затем у каждого ребенка спрашивали, сколько секунд ему потребовалось бы для решения аналогичной задачи. Экспериментатор вычислял разность между называемым ребенком временем и результатом выполненного за­дания (в сек.). Ожидалось, что сообщение о неудаче вызовет некоторую неадекват­ность самооценки ребенка. Проверяемая гипотеза (на уровне α = 0,005) состояла в том, что дисперсия совокупности самооценок не зависит от сообщений об удаче или неудаче (Н 0: σ 1 2=σ 2 2).

Были получены следующие данные:


Ш а г 1. Вычислим эмпирическое значение критерия и числа степеней свободы по формулам (4):

Шаг 2. По таблице критических значений критерия f-Фишера для ненаправлен­ных альтернатив находим критическое значение для df числ = 11; df знам = 11. Однако критическое значение есть только для df числ = 10 и df знам = 12. Боль­шее число степеней свободы брать нельзя, поэтому берем критическое значение для df числ = 10: Для р = 0,05 F Kp = 3,526; для р = 0,01 F Kp = 5,418.

Ш а г 3. Принятие статистического решения и содержательный вывод. Поскольку эмпирическое значение превышает критическое значение для р = 0,01 (и тем бо­лее - для р = 0,05), то в данном случае р < 0,01 и принимается альтернативная гипо­теза: дисперсия в группе 1 превышает дисперсию в группе 2 (р < 0,01). Следователь­но, после сообщения о неудаче неадекватность самооценки выше, чем после сооб­щения об удаче.

/ практикум-статистика / справочные материалы / значения t-критерия стьюдента

Значение t -критерия Стьюдента при уровне значимости 0,10, 0,05 и 0,01

ν – степени свободы вариации

Стандартные значения критерия Стьюдента

Число степеней свободы

Уровни значимости

Число степеней свободы

Уровни значимости

Таблица XI

Стандартные значения критерия Фишера, используемые для оценки достоверности различий между двумя выборками

Степени свободы

Уровень значимости

Степени свободы

Уровень значимости

t-Критерий Стьюдента

t-критерий Стьюдента - общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.

t -статистика строится обычно по следующему общему принципу: в числителе случайная величина с нулевым математическим ожиданием (при выполнении нулевой гипотезы), а в знаменателе - выборочное стандартное отклонение этой случайной величины, получаемое как квадратный корень из несмешенной оценки дисперсии.

История

Данный критерий был разработан Уильямом Госсетом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны (руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).

Требования к данным

Для применения данного критерия необходимо, чтобы исходные данные имели нормальное распределение. В случае применения двухвыборочного критерия для независимых выборок также необходимо соблюдение условия равенства дисперсий. Существуют, однако, альтернативы критерию Стьюдента для ситуации с неравными дисперсиями.

Требование нормальности распределения данных является необходимым для точного t {\displaystyle t} -теста. Однако, даже при других распределениях данных возможно использование t {\displaystyle t} -статистики. Во многих случаях эта статистика асимптотически имеет стандартное нормальное распределение - N (0 , 1) {\displaystyle N(0,1)} , поэтому можно использовать квантили этого распределения. Однако, часто даже в этом случае используют квантили не стандартного нормального распределения, а соответствующего распределения Стьюдента, как в точном t {\displaystyle t} -тесте. Асимптотически они эквивалентны, однако на малых выборках доверительные интервалы распределения Стьюдента шире и надежнее.

Одновыборочный t-критерий

Применяется для проверки нулевой гипотезы H 0: E (X) = m {\displaystyle H_{0}:E(X)=m} о равенстве математического ожидания E (X) {\displaystyle E(X)} некоторому известному значению m {\displaystyle m} .

Очевидно, при выполнении нулевой гипотезы E (X ¯) = m {\displaystyle E({\overline {X}})=m} . С учётом предполагаемой независимости наблюдений V (X ¯) = σ 2 / n {\displaystyle V({\overline {X}})=\sigma ^{2}/n} . Используя несмещенную оценку дисперсии s X 2 = ∑ t = 1 n (X t − X ¯) 2 / (n − 1) {\displaystyle s_{X}^{2}=\sum _{t=1}^{n}(X_{t}-{\overline {X}})^{2}/(n-1)} получаем следующую t-статистику:

t = X ¯ − m s X / n {\displaystyle t={\frac {{\overline {X}}-m}{s_{X}/{\sqrt {n}}}}}

При нулевой гипотезе распределение этой статистики t (n − 1) {\displaystyle t(n-1)} . Следовательно, при превышении значения статистики по абсолютной величине критического значения данного распределения (при заданном уровне значимости) нулевая гипотеза отвергается.

Двухвыборочный t-критерий для независимых выборок

Пусть имеются две независимые выборки объемами n 1 , n 2 {\displaystyle n_{1}~,~n_{2}} нормально распределенных случайных величин X 1 , X 2 {\displaystyle X_{1},~X_{2}} . Необходимо проверить по выборочным данным нулевую гипотезу равенства математических ожиданий этих случайных величин H 0: M 1 = M 2 {\displaystyle H_{0}:~M_{1}=M_{2}} .

Рассмотрим разность выборочных средних Δ = X ¯ 1 − X ¯ 2 {\displaystyle \Delta ={\overline {X}}_{1}-{\overline {X}}_{2}} . Очевидно, если нулевая гипотеза выполнена E (Δ) = M 1 − M 2 = 0 {\displaystyle E(\Delta)=M_{1}-M_{2}=0} . Дисперсия этой разности равна исходя из независимости выборок: V (Δ) = σ 1 2 n 1 + σ 2 2 n 2 {\displaystyle V(\Delta)={\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}} . Тогда используя несмещенную оценку дисперсии s 2 = ∑ t = 1 n (X t − X ¯) 2 n − 1 {\displaystyle s^{2}={\frac {\sum _{t=1}^{n}(X_{t}-{\overline {X}})^{2}}{n-1}}} получаем несмещенную оценку дисперсии разности выборочных средних: s Δ 2 = s 1 2 n 1 + s 2 2 n 2 {\displaystyle s_{\Delta }^{2}={\frac {s_{1}^{2}}{n_{1}}}+{\frac {s_{2}^{2}}{n_{2}}}} . Следовательно, t-статистика для проверки нулевой гипотезы равна

T = X ¯ 1 − X ¯ 2 s 1 2 n 1 + s 2 2 n 2 {\displaystyle t={\frac {{\overline {X}}_{1}-{\overline {X}}_{2}}{\sqrt {{\frac {s_{1}^{2}}{n_{1}}}+{\frac {s_{2}^{2}}{n_{2}}}}}}}

Эта статистика при справедливости нулевой гипотезы имеет распределение t (d f) {\displaystyle t(df)} , где d f = (s 1 2 / n 1 + s 2 2 / n 2) 2 (s 1 2 / n 1) 2 / (n 1 − 1) + (s 2 2 / n 2) 2 / (n 2 − 1) {\displaystyle df={\frac {(s_{1}^{2}/n_{1}+s_{2}^{2}/n_{2})^{2}}{(s_{1}^{2}/n_{1})^{2}/(n_{1}-1)+(s_{2}^{2}/n_{2})^{2}/(n_{2}-1)}}}

Случай одинаковой дисперсии

В случае, если дисперсии выборок предполагаются одинаковыми, то

V (Δ) = σ 2 (1 n 1 + 1 n 2) {\displaystyle V(\Delta)=\sigma ^{2}\left({\frac {1}{n_{1}}}+{\frac {1}{n_{2}}}\right)}

Тогда t-статистика равна:

T = X ¯ 1 − X ¯ 2 s X 1 n 1 + 1 n 2 , s X = (n 1 − 1) s 1 2 + (n 2 − 1) s 2 2 n 1 + n 2 − 2 {\displaystyle t={\frac {{\overline {X}}_{1}-{\overline {X}}_{2}}{s_{X}{\sqrt {{\frac {1}{n_{1}}}+{\frac {1}{n_{2}}}}}}}~,~~s_{X}={\sqrt {\frac {(n_{1}-1)s_{1}^{2}+(n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2}}}}

Эта статистика имеет распределение t (n 1 + n 2 − 2) {\displaystyle t(n_{1}+n_{2}-2)}

Двухвыборочный t-критерий для зависимых выборок

Для вычисления эмпирического значения t {\displaystyle t} -критерия в ситуации проверки гипотезы о различиях между двумя зависимыми выборками (например, двумя пробами одного и того же теста с временным интервалом) применяется следующая формула:

T = M d s d / n {\displaystyle t={\frac {M_{d}}{s_{d}/{\sqrt {n}}}}}

где M d {\displaystyle M_{d}} - средняя разность значений, s d {\displaystyle s_{d}} - стандартное отклонение разностей, а n - количество наблюдений

Эта статистика имеет распределение t (n − 1) {\displaystyle t(n-1)} .

Проверка линейного ограничения на параметры линейной регрессии

С помощью t-теста можно также проверить произвольное (одно) линейное ограничение на параметры линейной регрессии, оцененной обычным методом наименьших квадратов. Пусть необходимо проверить гипотезу H 0: c T b = a {\displaystyle H_{0}:c^{T}b=a} . Очевидно, при выполнении нулевой гипотезы E (c T b ^ − a) = c T E (b ^) − a = 0 {\displaystyle E(c^{T}{\hat {b}}-a)=c^{T}E({\hat {b}})-a=0} . Здесь использовано свойство несмещенности МНК-оценок параметров модели E (b ^) = b {\displaystyle E({\hat {b}})=b} . Кроме того, V (c T b ^ − a) = c T V (b ^) c = σ 2 c T (X T X) − 1 c {\displaystyle V(c^{T}{\hat {b}}-a)=c^{T}V({\hat {b}})c=\sigma ^{2}c^{T}(X^{T}X)^{-1}c} . Используя вместо неизвестной дисперсии её несмещенную оценку s 2 = E S S / (n − k) {\displaystyle s^{2}=ESS/(n-k)} получаем следующую t-статистику:

T = c T b ^ − a s c T (X T X) − 1 c {\displaystyle t={\frac {c^{T}{\hat {b}}-a}{s{\sqrt {c^{T}(X^{T}X)^{-1}c}}}}}

Эта статистика при выполнении нулевой гипотезы имеет распределение t (n − k) {\displaystyle t(n-k)} , поэтому если значение статистики выше критического, то нулевая гипотеза о линейном ограничении отклоняется.

Проверка гипотез о коэффициенте линейной регрессии

Частным случаем линейного ограничения является проверка гипотезы о равенстве коэффициента b j {\displaystyle b_{j}} регрессии некоторому значению a {\displaystyle a} . В этом случае соответстующая t-статистика равна:

T = b ^ j − a s b ^ j {\displaystyle t={\frac {{\hat {b}}_{j}-a}{s_{{\hat {b}}_{j}}}}}

где s b ^ j {\displaystyle s_{{\hat {b}}_{j}}} - стандартная ошибка оценки коэффициента - квадратный корень из соответствующего диагонального элемента ковариационной матрицы оценок коэффициентов.

При справедливости нулевой гипотезы распределение этой статистики - t (n − k) {\displaystyle t(n-k)} . Если значение статистики по абсолютной величине выше критического значения, то отличие коэффициента от a {\displaystyle a} является статистически значимым (неслучайным), в противном случае - незначимым (случайным, то есть истинный коэффициент вероятно равен или очень близок к предполагаемому значению a {\displaystyle a})

Замечание

Одновыборочный тест для математических ожиданий можно свести к проверке линейного ограничения на параметры линейной регрессии. В одновыборочном тесте это «регрессия» на константу. Поэтому s 2 {\displaystyle s^{2}} регрессии это и есть выборочная оценка дисперсии изучаемой случайной величины, матрица X T X {\displaystyle X^{T}X} равна n {\displaystyle n} , а оценка «коэффициента» модели равна выборочному среднему. Отсюда и получаем выражение для t-статистики, приведенное выше для общего случая.

Аналогично можно показать, что двухвыборочный тест при равенстве дисперсий выборок также сводится к проверке линейных ограничений. В двухвыборочном тесте это «регрессия» на константу и фиктивную переменную, идентифицирующую подвыборку в зависимости от значения (0 или 1): y = a + b D {\displaystyle y=a+bD} . Гипотеза о равенстве математических ожиданий выборок может быть сформулирована как гипотеза о равенстве коэффициента b этой модели нулю. Можно показать, что соответствующая t-статистика для проверки этой гипотезы равна t-статистике, приведенной для двухвыборочного теста.

Также к проверке линейного ограничения можно свести и в случае разных дисперсий. В этом случае дисперсия ошибок модели принимает два значения. Исходя из этого можно также получить t-статистику, аналогичную приведенной для двухвыборочного теста.

Непараметрические аналоги

Аналогом двухвыборочного критерия для независимых выборок является U-критерий Манна - Уитни. Для ситуации с зависимыми выборками аналогами являются критерий знаков и T-критерий Вилкоксона

Литература

Student. The probable error of a mean. // Biometrika. 1908. № 6 (1). P. 1-25.

Ссылки

О критериях проверки гипотез об однородности средних на сайте Новосибирского государственного технического университета

Эквивалентным подходом к интерпретации результатов теста будет следующий: допустив, что нулевая гипотеза верна, мы можем рассчитать, насколько велика вероятность получить t -критерий, равный или превышающий то реальное значение, которое мы рассчитали по имеющимся выборочным данным. Если эта вероятность оказывается меньше, чем заранее принятый уровень значимости (например, Р < 0.05), мы вправе отклонить проверяемую нулевую гипотезу. Именно такой подход сегодня используется чаще всего: исследователи приводят в своих работах P-значение, которое легко рассчитывается при помощи статистических программ. Рассмотрим, как это можно сделать в системе R.

Предположим, у нас имеются данные по суточному потреблению энергии, поступающей с пищей (кДж/сутки), для 11 женщин (пример заимствован из книги Altman D. G. (1981) Practical Statistics for Medical Research , Chapman & Hall, London ):


Среднее значение для этих 11 наблюдений составляет:


Вопрос: отличается ли это выборочное среднее значение от установленной нормы в 7725 кДж/сутки? Разница между нашим выборочным значением и этим нормативом довольно прилична: 7725 - 6753.6 = 971.4. Но насколько велика эта разница статистически? Ответить на этот вопрос поможет одновыборочный t -тест. Как и другие варианты t -теста, одновыборочный тест Стьюдента выполняется в R при помощи функции t.test() :


Вопрос: различаются ли эти средние значения статистически? Проверим гипотезу об отсутствии разницы при помощи t -теста:

Но как в таких случаях оценить наличие эффекта от воздействия статистически? В общем виде критерий Стьюдента можно представить как

Эквивалентным подходом к интерпретации результатов теста будет следующий: допустив, что нулевая гипотеза верна, мы можем рассчитать, насколько велика вероятность получить t -критерий, равный или превышающий то реальное значение, которое мы рассчитали по имеющимся выборочным данным. Если эта вероятность оказывается меньше, чем заранее принятый уровень значимости (например, Р < 0.05), мы вправе отклонить проверяемую нулевую гипотезу. Именно такой подход сегодня используется чаще всего: исследователи приводят в своих работах P-значение, которое легко рассчитывается при помощи статистических программ. Рассмотрим, как это можно сделать в системе R.

Предположим, у нас имеются данные по суточному потреблению энергии, поступающей с пищей (кДж/сутки), для 11 женщин (пример заимствован из книги Altman D. G. (1981) Practical Statistics for Medical Research , Chapman & Hall, London ):


Среднее значение для этих 11 наблюдений составляет:


Вопрос: отличается ли это выборочное среднее значение от установленной нормы в 7725 кДж/сутки? Разница между нашим выборочным значением и этим нормативом довольно прилична: 7725 - 6753.6 = 971.4. Но насколько велика эта разница статистически? Ответить на этот вопрос поможет одновыборочный t -тест. Как и другие варианты t -теста, одновыборочный тест Стьюдента выполняется в R при помощи функции t.test() :


Вопрос: различаются ли эти средние значения статистически? Проверим гипотезу об отсутствии разницы при помощи t -теста:

Но как в таких случаях оценить наличие эффекта от воздействия статистически? В общем виде критерий Стьюдента можно представить как

Выбор редакции
КАК УЗНАТЬ СВОЕ ПРЕДНАЗНАЧЕНИЕ ПО ДАТЕ РОЖДЕНИЯ!Советуем внимательно изучить этот нелегкий материал, примерить его к себе и внести...

Такой талисман, как Ци Линь, символизирует празднество, долгую жизнь, радость, великолепие, мудрость и появление знаменитых потомков....

Раньше мидии считались деликатесом и бывали на столах среднестатистических семей очень редко. Сейчас данный продукт стал доступен многим....

В преддверии новогодних и Рождественских праздников мы все чаще задаем себе совсем нериторический вопрос из вечной серии «что...
Одним из наиболее популярных фаршированных колбасных изделий является языковая колбаса. Для ее изготовления используют только самое...
СИТУАЦИЯ: Работник, занятый во вредных условиях труда, был направлен на обязательный периодический медицинский осмотр. Но в назначенное...
Федеральный закон № 402-ФЗ от 06.12.2011 в статье 9 предусматривает для коммерческих предприятий свободный выбор форм первичной...
Продолжительность рабочего времени медицинских работников строго контролируется Трудовым кодексом. Установлены определённые часы, на...
Сведений о семье в биографии политолога Сергея Михеева крайне мало. Зато карьерные достижения помогли снискать, как поклонников...