Число объектов выборки или генеральной совокупности называют. Генеральная и выборочная совокупности


Это наука, которая, основываясь на методах теории вероятностей, занимается систематизацией и обработкой статистических данных для получения научных и практических выводов.

Статистическими данными называются сведения о числе объектов, обладающих теми или иными признаками.

Группа объектов, объединенных по некоторому качественному или количественному признаку, называется статистической совокупностью . Объекты, входящие в совокупность, называются её элементами, а их общее число - ее объемом.

Генеральной совокупностью называется множество всех мыслимо возможных наблюдений, которые могли бы быть сделаны при данном реальном комплексе условий или более строго: генеральной совокупностью называется случайная величина x и связанное с ней вероятностное пространство {W,Á,Р}.

Распределение случайной величины x называют распределением генеральной совокупности (говорят, например, о нормально распределенной или просто нормальной генеральной совокупности).

Например, если производится ряд независимых измерений случайной величины x, то генеральная совокупность теоретически бесконечна (т.е. генеральная совокупность - абстрактное, условно - математическое понятие); если же проверяется число дефектных изделий в партии из N изделий, то эту партию рассматривают как конечную генеральную совокупность объема N.

В случае социально-экономических исследований генеральной совокупностью объема N может быть население какого-то города, региона или страны, а измеряемыми признаками - доходы, расходы или объем сбережений отдельно взятого человека. Если какой-то признак имеет качественный характер (например, пол, национальность, социальное положение, род деятельности и т.п.), но принадлежит к конечному множеству вариантов, то он может быть также закодирован числом (как это часто делают в анкетах).

Если число объектов N достаточно велико, то провести сплошное обследование затруднительно, а иногда физически невозможно (например, проверить качество всех патронов). Тогда случайным образом отбирают из всей генеральной совокупности ограниченное число объектов и подвергают их изучению.

Выборочной совокупностью или просто выборкой объема n называется последовательность х 1 , х 2 , …, х n независимых одинаково распределенных случайных величин, распределение каждой из которых совпадает с распределением случайной величины x.

Например, результаты n первых измерений случайной величины x принято рассматривать как выборку объема n из бесконечной генеральной совокупности. Полученные данные называют наблюдениями случайной величины x, а также говорят, что случайная величина x "принимает значения" х 1 , х 2 , …, х n .


Основная задача математической статистики - сделать научно обоснованные выводы о распределении одной или более неизвестных случайных величин или их взаимосвязи между собой. Метод, состоящий в том, что на основании свойств и характеристик выборки делаются заключения о числовых характеристиках и законе распределения случайной величины (генеральной совокупности) называется выборочным методом.

Для того, чтобы характеристики случайной величины, полученные выборочным методом, были объективны, необходимо, чтобы выборка была репрезентативной, т.е. достаточно хорошо представляла исследуемую величину. В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществить случайно, т.е. все объекты генеральной совокупности имеют одинаковую вероятность попасть в выборку. Для этого существуют различные виды отбора выборки.

1. Простым случайным отбором называется отбор, при котором объекты извлекаются по одному из всей генеральной совокупности.

2. Стратифицированный (расслоенный ) отбор заключается в том, что исходная генеральная совокупность объема N подразделяется на подмножества (страты) N 1 , N 2 ,…,N k , так что N 1 + N 2 +…+ N k = N. Когда страты определены, из каждого из них извлекается простая случайная выборка объема n 1 , n 2 , …, n k . Частным случаем стратифицированного отбора является типический отбор, при котором объекты отбирают не из всей генеральной совокупности, а из каждой типической ее части.

Комбинированный отбор сочетает в себе сразу несколько видов отбора, образующих различные фазы выборочного обследования. Существуют и другие методы организации выборки.

Выборка называется повторной , если отобранный объект перед выбором следующего возвращается в генеральную совокупность. Выборка называется бесповторной , если отобранный объект в генеральную совокупность не возвращается. Для конечной генеральной совокупности случайный отбор без возвращения приводит на каждом шаге к зависимости отдельных наблюдений, случайный равновозможный выбор с возвращением - к независимости наблюдений. На практике обычно имеют дело с бесповторными выборками. Тем не менее, когда объем генеральной совокупности N во много раз больше, чем объем выборки n (например, в сотни или тысячи раз), зависимостью наблюдений можно пренебречь.

Таким образом, случайная выборка х 1 , х 2 , …, х n - это результат последовательных и независимых наблюдений над случайной величиной ξ, представляющую генеральную совокупность, и все элементы выборки имеют тоже распределении, что исходная случайная величина x.

Функцию распределения F x (х) и другие числовые характеристики случайной величины x будем называть теоретическими, в отличие от выборочных характеристик , которые определяются по результатам наблюдений.

Пусть выборка х 1 , х 2 , …, х к есть результат независимых наблюдений случайной величины x, причем х 1 наблюдалось n 1 раз, х 2 - n 2 раза, …, х к - n к раз, так что n i = n - объем выборки. Число n i , показывающее, сколько раз появилось значение х i в n наблюдениях, называется частотой данного значения, а отношение n i /n = w i - относительной частотой . Очевидно, что числа w i рациональны и .

Статистическая совокупность, расположенная в порядке возрастания признака, называется вариационным рядом . Его члены обозначают x (1) , x (2), … x (n) и называют вариантами . Вариационный ряд называется дискретным , если его члены принимают конкретные изолированные значения. Статистическим распределением выборки дискретной случайной величины x называется перечень вариант и соответствующих им относительных частот w i . Полученная таблица называется статистическим рядом.

X (1) x (2) ... x k(k)
ω 1 ω 2 ... ω k

Наибольшее и наименьшее значения вариационного ряда обозначают x min и x max и называют крайними членами вариационного ряда.

Если изучается непрерывная случайная величина, то группировка заключается в разбиении интервала наблюдаемых значений на k частичных интервалов равной длины h, и подсчете числа попаданий наблюдений в эти интервалы. Полученные числа принимают за частоты n i (для некоторой новой, уже дискретной случайной величины). В качестве новых значений вариант x i обычно берутся середины интервалов (либо в таблице указываются сами интервалы). Согласно формуле Стерждеса рекомендуемое число интервалов разбиения k » 1 + log 2 n , а длины частичных интервалов равны h = (x max - x min)/k. Предполагается, что весь интервал имеет вид .

Графически статистические ряды могут быть представлены в виде полигона, гистограммы или графика накопленных частот.

Полигоном частот называют ломаную линию, отрезки которой соединяют точки (x 1 , n 1), (x 2 , n 2), …, (x k , n k). Полигоном относительных частот называют ломаную, отрезки которой соединяют точки (x 1 , w 1), (x 2 , w 2), …, (x k , w k). Полигоны обычно служат для изображения выборки в случае дискретных случайных величин (рис. 7.1.1).

Рис. 7.1

.1.

Гистограммой относительных частот называется ступенчатая фигура, состоящая из прямоугольников, основанием которых служат частичные интервалы длиною h , а высоты

равны w i /h.

Гистограмма обычно служит для изображения выборки в случае непрерывных случайных величин. Площадь гистограммы равна единице (рис. 7.1.2). Если на гистограмме относительных частот соединить середины верхних сторон прямоугольников, то полученная ломанная образует полигон относительных частот. Поэтому гистограмму можно рассматривать как график эмпирической (выборочной) плотности распределения f n (x). Если у теоретического распределения существует конечная плотность, то эмпирическая плотность является некоторым приближением теоретической.

Графиком накопленных частот называется фигура, строящаяся аналогично гистограмме с той разницей, что для расчета высот прямоугольников берутся не простые, а накопленные относительные частоты , т.е. величины . Эти величины не убывают, и график накопленных частот имеет вид ступенчатой "лестницы" (от 0 до 1).

График накопленных частот на практике используются для приближения теоретической функции распределения.

Задача. Анализируется выборка из 100 малых предприятий региона. Цель обследования - измерение коэффициента соотношения заемных и собственных средств (х i) на каждом i-ом предприятии. Результаты представлены в таблице 7.1.1.

Таблица Коэффициенты соотношений заемных и собственных средств предприятий.

5,56 5,45 5,48 5,45 5,39 5,37 5,46 5,59 5,61 5,31
5,46 5,61 5,11 5,41 5.31 5,57 5,33 5,11 5,54 5,43
5,34 5,53 5,46 5,41 5,48 5,39 5,11 5,42 5,48 5,49
5,36 5,40 5,45 5,49 5,68 5,51 5,50 5,68 5,21 5,38
5,58 5,47 5,46 5,19 5,60 5,63 5,48 5,27 5,22 5,37
5,33 5,49 5,50 5,54 5,40 5.58 5,42 5,29 5,05 5,79
5,79 5,65 5,70 5,71 5,85 5,44 5,47 5,48 5,47 5,55
5,67 5,71 5,73 5,05 5,35 5,72 5,49 5,61 5,57 5,69
5,54 5,39 5,32 5,21 5,73 5,59 5,38 5,25 5,26 5,81
5,27 5,64 5,20 5,23 5,33 5,37 5,24 5,55 5,60 5,51

Построить гистограмму и график накопленных частот.

Решение . Построим группированный ряд наблюдений:

1. Определим в выборке х min = 5,05 и x max = 5,85;

2. Разобьем весь диапазон на k равных интервалов: k » 1 + log 2 100 = 7,62; k = 8, отсюда длина интервала

Таблица 7.1.2. Сгруппированный ряд наблюдений

Номер Интервала Интервалы Середины интервалов х i w i f n (x)
5,05-5,15 5,1 0,05 0,05 0,5
5,15-5,25 5,2 0,08 0,13 0,8
5,25-5,35 5,3 0,12 0,25 1,2
5,35-5,45 5,4 0,20 0,45 2,0
5,45-5,55 5,5 0,26 0,71 2,6
5,55-5,65 5,6 0,15 0,86 1,5
5,65-5,75 5,7 0,10 0,96 1,0
5,75-5,85 5,8 0,04 1,00 0,4

На рис. 7.1.3 и 7.1.4, построенных по данным таблицы 7.1.2, представлены гистограмма и график накопленных частот. Кривые соответствуют плотности и функции нормального распределения, "подобранного" к данным.

Таким образом, распределение выборки является некоторым приближением распределения генеральной совокупности.

Генеральная совокупность – совокупность элементов, удовлетворяющих неким заданным условиям; именуется также изучаемой совокупностью. Генеральная совокупность (Universe) - все множество объектов (субъектов) исследования, из которого выбираются (могут выбираться) объекты (субъекты) для обследования (опроса).

ВЫБОРКА или выборочная совокупность (Sample) - это множество объектов (субъектов), отобранных специальным образом для обследования (опроса). Любые данные, полученные на основании выборочного обследования (опроса), имеют вероятностный характер. На практике это означает, что в ходе исследования определяется не конкретное значение, а интервал, в котором определяемое значение находится.

Характеристики выборки:

Качественная характеристика выборки – что именно мы выбираем и какие способы построения выборки мы для этого используем.

Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.

Необходимость выборки:

Объект исследования очень обширный. Например, потребители продукции глобальной компании – огромное количество территориально разбросанных рынков.

Существует необходимость в сборе первичной информации.

Объём выборки - число случаев, включённых в выборочную совокупность.

Зависимые и независимые выборки.

При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми .

В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми.

Типы выборки.

Выборки делятся на два типа:

Вероятностные;

Не вероятностные;

Репрезентативная выборка - выборочная совокупность, в которой основные характеристики совпадают с характеристиками генеральной совокупности. Только для этого типа выборки результаты обследования части единиц (объектов) можно распространять на всю генеральную совокупность. Необходимое условие для построения репрезентативной выборки - наличие информации о генеральной совокупности, т.е. либо полный список единиц (субъектов) генеральной совокупности, либо информация о структуре по характеристикам, существенно влияющим на отношение к предмету исследования.

17. Дискретный вариационный ряд, ранжирование, частота, частность.

Вариационным рядом (статистическим рядом) – называется последовательность вариант, записанных в порядке возрастания и соответствующих им весов.

Вариационный ряд может быть дискретным (выборка значений дискретной случайной величины) и непрерывным (интервальным) (выборка значений непрерывной случайной величины).

Дискретный вариационный ряд имеет вид:

Наблюдаемые значения случайной величины х1, х2, …, хk называются вариантами, а изменение этих значений называются варьированием.

Выборка (выборочная совокупность) – совокупность наблюдений, отобранных случайным образом из генеральной совокупности.

Число наблюдений в совокупности называется ее объемом.

N – объем генеральной совокупности.

n – объем выборки(сумма всех частот ряда).

Частотой варианты хi называется число ni (i=1,…,k), показывающее, сколько раз эта варианта встречается в выборке.

Частостью (относительной частотой, долей) варианты хi (i=1,…,k) называется отношение ее частоты ni к объему выборки n.
wi =ni /n

Ранжирование опытных данных - операция, заключающаяся в том, что результаты наблюдений над случайной величиной, т. е. наблюдаемые значения случайной величины, располагают в порядке неубывания.

Дискретным вариационным рядом распределения называется ранжированная совокупность вариантов хi с соответствующими им частотами или частностями.

В предыдущем разделе нас интересовала распределение признака в некоторой совокупности элементов. Совокупность, которая объединяет все элементы, имеющая этот признак, называется генеральный. Если признак человеческий (национальность, образование, коэффициент IQ т.п.), то генеральная совокупность -- все население земли. Это очень большая совокупность, то есть число элементов в совокупности n велико. Число элементов называется объемом совокупности. Совокупности могут быть конечными и бесконечными. Генеральная совокупность - все люди хотя и очень большая, но, естественно, конечная. Генеральная совокупность - все звезды, наверное, бесконечно.

Если исследователь проводит измерение некоторой непрерывной случайной величины X, то каждый результат измерения можно считать элементом некоторой гипотетической неограниченной генеральной совокупности. В этой генеральной совокупности бесчисленная количество результатов распределены по вероятности под влиянием погрешностей в приборах, невнимательности экспериментатора, случайных помех в самом явлении и др.

Если мы проведем n повторных измерений случайной величины Х, то есть получим n конкретных различных численных значений, то этот результат эксперимента можно считать выборкой объема n из гипотетической генеральной совокупности результатов единичных измерений.

Естественно считать, что действительным значением измеряемой величины является среднее арифметическое от результатов. Эта функция от n результатов измерений называется статистикой, и она сама является случайной величиной, имеющей некоторое распределение называемая выборочным распределением. Определение выборочного распределения той или иной статистики -- важнейшая задача статистического анализа. Ясно, что это распределение зависит от объема выборки n и от распределения случайной величины Х гипотетической генеральной совокупности. Выборочное распределение статистики представляет собой распределение Х q в бесконечной совокупности всех возможных выборок объема n из исходной генеральной совокупности.

Можно проводить измерения и дискретной случайной величины.

Пусть измерение случайной величины Х представляет собой бросание правильной однородной треугольной пирамиды, на гранях которой написаны числа 1, 2, 3, 4. Дискретная, случайная величина Х имеет простое равномерное распределение:

Эксперимент можно производить неограниченное число раз. Гипотетической теоретической генеральной совокупностью является бесконечная совокупность, в которой имеются одинаковые доли (по 0.25) четырех разных элементов, обозначенных цифрами 1, 2, 3, 4. Серия из n повторных бросаний пирамиды или одновременное бросание n одинаковых пирамид можно рассматривать как выборку объема n из этой генеральной совокупности. В результате эксперимента имеем n чисел. Можно ввести некоторые функции этих величин, которые называются статистиками, они могут быть связаны с определенными параметрами генерального распределения.

Важнейшими числовыми характеристиками распределений являются вероятности Р i , математическое ожидание М, дисперсия D. Статистиками для вероятностей Р i являются относительные частоты, где n i -- частота результата i (i=1,2,3,4) в выборке. Математическому ожиданию М соответствует статистика

которая называется выборочным средним. Выборочная дисперсия

соответствует генеральной дисперсии D.

Относительная частота любого события (i=1,2,3,4) в сериях из n повторных испытаний (или в выборках объема n из генеральной совокупности) будет иметь биномиальное распределение.

У этого распределения математическое ожидание равно 0.25 (не зависит от n), а среднее квадратическое отклонение равно (быстро убывает с ростом n). Распределение является выборочным распределением статистики, относительная частота любого из четырех возможных результатов единичного бросания пирамиды в n повторных испытаниях. Если бы мы выбрали из бесконечной, генеральной совокупности, в которой четыре разных элемента (i=1,2,3,4) имеют равные доли по 0.25, все возможные выборки объемом n (их число также бесконечно), то получили бы так называемую математическую выборку объема n. В этой выборке каждый из элементов (i=1,2,3,4) распределен по биномиальному закону.

Допустим, мы выполнили бросания этой пирамиды, и число двойка выпало 3 раза (). Мы можем найти вероятность этого результата, используя выборочное распределение. Она равна

Наш результат оказался весьма маловероятным; в серии из двадцати четырех кратных бросаний он встречается примерно один раз. В биологии такой результат обычно считается практически невозможным. В этом случае у нас появится сомнение: является пирамида правильной и однородной, справедливо ли при одном бросании равенство, верно ли распределение и, следовательно, выборочное распределение.

Чтобы разрешить сомнение, надо выполнить еще один раз четырехкратное бросание. Если снова появится результат, то вероятность двух результатов с очень мала. Ясно, что мы получили практически совершенно невозможный результат. Поэтому исходное распределение неверное. Очевидно, что, если второй результат окажется еще маловероятней, то имеется еще большее оснований разобраться с этой "правильной" пирамидой. Если же результат повторного эксперимента будет и, тогда можно считать, что пирамида правильная, а первый результат (), тоже верный, но просто маловероятный.

Нам можно было и не заниматься проверкой правильности и однородности пирамиды, а считать априори пирамиду правильной и однородной, и, следовательно, правильным выборочное распределение. Далее следует выяснить, что дает знание выборочного распределения для исследования генеральной совокупности. Но поскольку установление выборочного распределения является основной задачей статистического исследования, подробное описание экспериментов с пирамидой можно считать оправданным.

Будем считать, что выборочное распределение верное. Тогда экспериментальные значения относительной частоты в различных сериях по n бросаний пирамиды будут группироваться около значения 0.25, являющегося центром выборочного распределения и точным значением оцениваемой вероятности. В этом случае говорят, что относительная частота является несмещенной оценкой. Поскольку, выборочная дисперсия стремиться к нулю с ростом n, то экспериментальные значения относительной частоты будут все теснее группироваться около математического ожидания выборочного распределения с ростом объема выборки. Поэтому является состоятельной оценкой вероятности.

Если бы пирамида оказалась направильной и неоднородной, то выборочные распределения для различных (i=1,2,3,4) имели бы отличные математические ожидания (разные) и дисперсии.

Отметим, что полученные здесь биномиальные выборочные распределения при больших n () хорошо апроксимируются нормальным распределением с параметрами и, что значительно упрощает расчеты.

Продолжим случайный эксперимент -- бросание правильной, однородной, треугольной пирамиды. Случайная величина Х, связанная с этим опытом, имеет распределение. Математическое ожидание здесь равно

Проведем n бросаний, что эквивалентно случайной выборке объема n из гипотетической, бесконечной, генеральной совокупности, содержащей равные доли (0.25) четырех разных элементов. Получим n выборочных значений случайной величины Х (). Выберем статистику, которая представляет собой выборочное среднее. Величина сама является случайной величиной, имеющей некоторое распределение, зависящее от объема выборки и распределения исходной, случайной величины Х. Величина является усредненной суммой n одинаковых, случайных величин (то есть с одинаковым распределением). Ясно, что

Поэтому статистика является несмещенной оценкой математического ожидания. Она является также состоятельной оценкой, поскольку

Таким образом, теоретическое выборочное распределение имеет тоже математическое ожидание, что и у исходного распределения, дисперсия уменьшена в n раз.

Напомним, что равна

Математическая, абстрактная бесконечная выборка, связанная с выборкой объема n из генеральной совокупности и с введенной статистикой будет содержать в нашем случае элементов. Например, если, то в математической выборке будут элементы со значениями статистики. Всего элементов будет 13. Доля крайних элементов в математической выборке будет минимальной, так как результаты и имеют вероятности, равные. Среди множества элементарных исходов четырех кратного бросания пирамиды имеются только по одному благоприятному и. При приближении статистик к средним значениям, вероятности будут возрастать. Например, значение будет реализоваться при элементарных исходах, и т. д. Соответственно возрастет и доля элемента 1.5 в математической выборке.

Среднее значение будет иметь максимальную вероятность. С ростом n экспериментальные результаты будут теснее группироваться около среднего значения. То обстоятельство, что среднее выборочного среднего равно среднему исходной совокупности часто используется в статистике.

Если выполнить расчеты вероятностей в выборочном распределении с, то можно убедиться, что уже при таком небольшом значении n выборочное распределение будет выглядеть как нормальное. Оно будет симметричным, в котором значение будет медианой, модой и математическим ожиданием. С ростом n оно хорошо апроксимируется соответствующим нормальным даже, если исходное распределение прямоугольное. Если же исходное распределение нормально, то распределение является распределением Стьюдента при любом n.

Для оценки генеральной дисперсии необходимо выбрать более сложную статистику, которая дает несмещенную и состоятельную оценку. В выборочном распределении для S 2 математическое ожидание равно, а дисперсия. При больших объемах выборок выборочное распределение можно считать нормальным. При малых n и нормальном исходном распределении выборочное распределение для S 2 будет ч 2 _распределение.

Выше мы попытались представить первые шаги исследователя, пытающегося провести простой статистический анализ повторных экспериментов с правильной однородной треугольной призмой (тетраэдром). В этом случае нам известно исходное распределение. Можно в принципе теоретически получить и выборочные распределения относительной частоты, выборочного среднего и выборочной дисперсии в зависимости от числа повторных опытов n. При больших n все эти выборочные распределения будут приближаться к соответствующим нормальным распределениям, так как они представляют собой законы распределения сумм независимых случайных величин (центральная предельная теорема). Таким образом, нам известны ожидаемые результаты.

Повторные эксперименты или выборки дадут оценки параметров выборочных распределений. Мы утверждали, что экспериментальные оценки будут правильными. Мы не выполняли эти эксперименты и даже не приводили результаты опытов, полученные другими исследователями. Можно подчеркнуть, что при определении законов распределений теоретические методы используются чаще, чем прямые эксперименты.

Генеральная совокупность - совокупность всех объектов (единиц), относительно которых учёный намерен делать выводы при изучении конкретной проблемы. Генеральная совокупность состоит из всех объектов, которые подлежат изучению. Состав генеральной совокупности зависит от целей исследования. Иногда генеральная совокупность — это все население определённого региона (например, когда изучается отношение потенциальных избирателей к кандидату), чаще всего задаётся несколько критериев, определяющих объект исследования. Например, женщины 18-29 лет, использующие крем для рук определённых марок не реже раза в неделю, и имеющие доход не ниже $150 на одного члена семьи.

Выборка - множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.

  1. Объём выборки;
  2. Зависимые и независимые выборки;
  3. Репрезентативность:
    1. Пример нерепрезентативной выборки;
  4. Виды плана построения групп из выборок;
  5. Стратегии построения групп:
    1. Рандомизация;
    2. Попарный отбор;
    3. Стратометрический отбор;
    4. Приближённое моделирование.

Объём выборки - число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30-35.

Зависимые и независимые выборки

При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X сооветствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми. Примеры зависимых выборок: пары близнецов, два измерения какого-либо признака до и после экспериментального воздействия, мужья и жёны и т. п.

В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми, например: мужчины и женщины, психологи и математики.

Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.

Сравнение выборок производится с помощью различных статистических критериев:

  • t-критерий Стьюдента;
  • T-критерий Вилкоксона;
  • U-критерий Манна-Уитни;
  • Критерий знаков и др.

Репрезентативность

Выборка может рассматриваться в качестве репрезентативной или нерепрезентативной.

Пример нерепрезентативной выборки

В США одним из наиболее известных исторических примеров нерепрезентативной выборки считается случай, происшедший во время президентских выборов в 1936 году Журнал «Литрери Дайджест», успешно прогнозировавший события нескольких предшествующих выборов, ошибся в своих предсказаниях, разослав десять миллионов пробных бюллетеней своим подписчикам, людям, выбранным по телефонным книгам всей страны, и людям из регистрационных списков автомобилей. В 25 % вернувшихся бюллетеней (почти 2,5 миллиона) голоса были распределены следующим образом:

57 % отдавали предпочтение кандидату-республиканцу Альфу Лэндону

40 % выбрали действующего в то время президента-демократа Франклина Рузвельта

На действительных же выборах, как известно, победил Рузвельт, набрав более 60 % голосов. Ошибка «Литрери Дайджест» заключалась в следующем: желая увеличить репрезентативность выборки, - так как им было известно, что большинство их подписчиков считают себя республиканцами, - они расширили выборку за счёт людей, выбранных из телефонных книг и регистрационных списков. Однако они не учли современных им реалий и в действительности набрали ещё больше республиканцев: во время Великой депрессии обладать телефонами и автомобилями могли себе позволить в основном представители среднего и верхнего класса (то есть большинство республиканцев, а не демократов).

Виды плана построения групп из выборок

Выделяют несколько основных видов плана построения групп:

  1. Исследование с экспериментальной и контрольной группами, которые ставятся в разные условия;
  2. Исследование с экспериментальной и контрольной группами с привлечением стратегии попарного отбора;
  3. Исследование с использованием только одной группы - экспериментальной;
  4. Исследование с использованием смешанного (факторного) плана - все группы ставятся в разные условия.

Стратегии построения групп

Отбор групп для их участия в психологическом эксперименте осуществляется с помощью различных стратегий, которые нужны для того, чтобы обеспечить максимально возможное соблюдение внутренней и внешней валидности:

  1. Рандомизация (случайный отбор);
  2. Попарный отбор;
  3. Стратометрический отбор;
  4. Приближённое моделирование;
  5. Привлечение реальных групп.

Рандомизация

Рандомизация, или случайный отбор, используется для создания простых случайных выборок. Использование такой выборки основывается на предположении, что каждый член популяции с равной вероятностью может попасть в выборку. Например, чтобы сделать случайную выборку из 100 студентов вуза, можно сложить бумажки с именами всех студентов вуза в шляпу, а затем достать из неё 100 бумажек - это будет случайным отбором

Попарный отбор

Попарный отбор - стратегия построения групп выборки, при котором группы испытуемых составляются из субъектов, эквивалентных по значимым для эксперимента побочным параметрам. Данная стратегия эффективна для экспериментов с использованием экспериментальных и контрольных групп с лучшим вариантом - привлечением близнецовых пар (моно- и дизиготных), так как позволяет создать.

Стратометрический отбор

Стратометрический отбор - рандомизация с выделением страт (или кластеров). При данном способе формирования выборки генеральная совокупность делится на группы (страты), обладающие определёнными характеристиками (пол, возраст, политические предпочтения, образование, уровень доходов и др.), и отбираются испытуемые с соответствующими характеристиками.

Приближённое моделирование

Приближённое моделирование - составление ограниченных выборок и обобщение выводов об этой выборке на более широкую популяцию. Например, при участии в исследовании студентов 2-го курса университета, данные этого исследования распространяются на «людей в возрасте от 17 до 21 года». Допустимость подобных обобщений крайне ограничена.

Статистическая совокупность - множество единиц, обладающих массовостью, типичностью, качественной однородностью и наличием вариации.

Статистическая совокупность состоит из материально существующих объектов (Работники, предприятия, страны, регионы), является объектом .

Единица совокупности — каждая конкретная единица статистической совокупности.

Одна и таже статистическая совокупность может быть однородна по одному признаку и неоднородна по другому.

Качественная однородность — сходство всех единиц совокупности по какому-либо признаку и несходство по всем остальным.

В статистической совокупности отличия одной единицы совокупности от другой чаще имеют количественную природу. Количественные изменения значений признака разных единиц совокупности называются вариацией.

Вариация признака — количественное изменение признака (для количественного признака) при переходе от одной единицы совокупности к другой.

Признак - это свойство, характерная черта или иная особенность единиц, объектов и явлений, которая может быть наблюдаема или измерена. Признаки делятся на количественные и качественные. Многообразие и изменчивость величины признака у отдельных единиц совокупности называется вариацией .

Атрибутивные (качественные) признаки не поддаются числовому выражению (состав населения по полу). Количественные признаки имеют числовое выражение (состав населения по возрасту).

Показатель — это обобщающая количественно качестванная характеристика какого-либо свойства единиц или совокупности в цельм в конкретных условиях времени и места.

Система показателей — это совокупность показателей всесторонне отражающих изучаемое явление.

Например, изучается зарплата:
  • Признак — оплата труда
  • Статистическая совокупность — все работники
  • Единица совокупности — каждый работник
  • Качественная однородность — начисленная зарплата
  • Вариация признака — ряд цифр

Генеральная совокупность и выборка из нее

Основу составляет множество данных, полученных в результате измерения одного или нескольких признаков. Реально наблюдаемая совокупность объектов, статистически представленная рядом наблюдений случайной величины , является выборкой , а гипотетически существующая (домысливаемая) — генеральной совокупностью . Генеральная совокупность может быть конечной (число наблюдений N = const ) или бесконечной (N = ∞ ), а выборка из генеральной совокупности — это всегда результат ограниченного ряда наблюдений. Число наблюдений , образующих выборку, называется объемом выборки . Если объем выборки достаточно велик (n → ∞ ) выборка считается большой , в противном случае она называется выборкой ограниченного объема . Выборка считается малой , если при измерении одномерной случайной величины объем выборки не превышает 30 (n <= 30 ), а при измерении одновременно нескольких (k ) признаков в многомерном пространстве отношение n к k не превышает 10 (n/k < 10) . Выборка образует вариационный ряд , если ее члены являются порядковыми статистиками , т. е. выборочные значения случайной величины Х упорядочены по возрастанию (ранжированы), значения же признака называются вариантами .

Пример . Практически одна и та же случайно отобранная совокупность объектов — коммерческих банков одного административного округа Москвы, может рассматриваться как выборка из генеральной совокупности всех коммерческих банков этого округа, и как выборка из генеральной совокупности всех коммерческих банков Москвы, а также как выборка из коммерческих банков страны и т.д.

Основные способы организации выборки

Достоверность статистических выводов и содержательная интерпретация результатов зависит от репрезентативности выборки, т.е. полноты и адекватности представления свойств генеральной совокупности, по отношению к которой эту выборку можно считать представительной. Изучение статистических свойств совокупности можно организовать двумя способами: с помощью сплошного и несплошного . Сплошное наблюдение предусматривает обследование всех единиц изучаемой совокупности , а несплошное (выборочное) наблюдение — только его части.

Существуют пять основных способов организации выборочного наблюдения:

1. простой случайный отбор , при котором объектов случайно извлекаются из генеральной совокупности объектов (например с помощью таблицы или датчика случайных чисел), причем каждая из возможных выборок имеют равную вероятность. Такие выборки называются собственно-случайными ;

2. простой отбор с помощью регулярной процедуры осуществляется с помощью механической составляющей (например, даты, дня недели, номера квартиры, буквы алфавита и др.) и полученные таким способом выборки называются механическими ;

3. стратифицированный отбор заключается в том, что генеральная совокупность объема подразделяется на подсовокупности или слои (страты) объема так что . Страты представляют собой однородные объекты с точки зрения статистических характеристик (например, население делится на страты по возрастным группам или социальной принадлежности; предприятия — по отраслям). В этом случае выборки называются стратифицированными (иначе, расслоенными, типическими, районированными );

4. методы серийного отбора используются для формирования серийных или гнездовых выборок . Они удобны в том случае, если необходимо обследовать сразу "блок" или серию объектов (например, партию товара, продукцию определенной серии или население при территориально-административном делении страны). Отбор серий можно осуществить собственно-случайным или механическим способом. При этом проводится сплошное обследование определенной партии товара, или целой территориальной единицы (жилого дома или квартала);

5. комбинированный (ступенчатый) отбор может сочетать в себе сразу несколько способов отбора (например, стратифицированный и случайный или случайный и механический); такая выборка называется комбинированной .

Виды отбора

По виду различаются индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе — качественно однородные группы (серии) единиц, а комбинированный отбор предполагает сочетание первого и второго видов.

По методу отбора различают повторную и бесповторную выборку.

Бесповторным называется отбор, при котором попавшая в выборку единица не возвращается в исходную совокупность и в дальнейшем выборе не участвует; при этом численность единиц генеральной совокупности N сокращается в процессе отбора. При повторном отборе попавшая в выборку единица после регистрации возвращается в генеральную совокупность и таким образом сохраняет равную возможность наряду с другими единицами быть использованной в дальнейшей процедуре отбора; при этом численность единиц генеральной совокупности N остается неизменной (метод в социально-экономических исследованиях применяется редко). Однако, при большом N (N → ∞) формулы для бесповторного отбора приближаются к аналогичным для повторного отбора и практически чаще используются последние (N = const ).

Основные характеристики параметров генеральной и выборочной совокупности

В основе статистических выводов проведенного исследования лежит распределение случайной величины , наблюдаемые же значения (х 1 , х 2 , … , х n) называются реализациями случайной величины Х (n — объем выборки). Распределение случайной величины в генеральной совокупности носит теоретический, идеальный характер, а ее выборочный аналог является эмпирическим распределением. Некоторые теоретические распределения заданы аналитически, т.е. их параметры определяют значение функции распределения в каждой точке пространства возможных значений случайной величины . Для выборки же функцию распределения определить трудно, а иногда невозможно, поэтому параметры оценивают по эмпирическим данным, а затем их подставляют в аналитическое выражение, описывающее теоретическое распределение. При этом предположение (или гипотеза ) о виде распределения может быть как статистически верным, так и ошибочным. Но в любом случае восстановленное по выборке эмпирическое распределение лишь грубо характеризует истинное. Важнейшими параметрами распределений являются математическое ожидание и дисперсия .

По своей природе распределения бывают непрерывными и дискретными . Наиболее известным непрерывным распределением является нормальное . Выборочными аналогами параметров идля него являются: среднее значение и эмпирическая дисперсия . Среди дискретных в социально-экономических исследованиях наиболее часто применяется альтернативное (дихотомическое) распределение. Параметр математического ожидания этого распределения выражает относительную величину (или долю ) единиц совокупности, которые обладают изучаемым признаком (она обозначена буквой ); доля совокупности, не обладающая этим признаком, обозначается буквой q (q = 1 — p) . Дисперсия же альтернативного распределения также имеет эмпирический аналог .

В зависимости от вида распределения и от способа отбора единиц совокупности по-разному вычисляются характеристики параметров распределения. Основные из них для теоретического и эмпирического распределений приведены в табл. 9.1.

Долей выборки k n называется отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

k n = n/N .

Выборочная доля w — это отношение единиц, обладающих изучаемым признаком x к объему выборки n :

w = n n /n .

Пример. В партии товара, содержащей 1000 ед., при 5% выборке доля выборки k n в абсолютной величине составляет 50 ед. (n = N*0,05); если же в этой выборке обнаружено 2 бракованных изделия, то выборочная доля брака w составит 0,04 (w = 2/50 = 0,04 или 4%).

Так как выборочная совокупность отлична от генеральной, то возникают ошибки выборки .

Таблица 9.1 Основные параметры генеральной и выборочной совокупностей

Ошибки выборки

При любом (сплошном и выборочном) могут встретиться ошибки двух видов: регистрации и репрезентативности. Ошибки регистрации могут иметь случайный и систематический характер. Случайные ошибки складываются из множества различных неконтролируемых причин, носят непреднамеренный характер и обычно по совокупности уравновешивают друг друга (например, изменения показателей прибора при температурных колебаниях в помещении).

Систематические ошибки тенденциозны, так как нарушают правила отбора объектов в выборку (например, отклонения в измерениях при изменении настройки измерительного прибора).

Пример. Для оценки социального положения населения в городе предусмотрено обследовать 25% семей. Если при этом выбор каждой четвертой квартиры основан на ее номере, то существует опасность отобрать все квартиры только одного типа (например, однокомнатные), что обеспечит систематическую ошибку и исказит результаты; выбор же номера квартиры по жребию более предпочтителен, так как ошибка будет случайной.

Ошибки репрезентативности присущи только выборочному наблюдению, их невозможно избежать и они возникают в результате того, что выборочная совокупность не полностью воспроизводит генеральную. Значения показателей, получаемых по выборке, отличаются от показателей этих же величин в генеральной совокупности (или получаемых при сплошном наблюдении).

Ошибка выборочного наблюдения есть разность между значением параметра в генеральной совокупности и ее выборочным значением. Для среднего значения количественного признака она равна: , а для доли (альтернативного признака) — .

Ошибки выборки свойственны только выборочным наблюдениям. Чем больше эти ошибки, тем больше эмпирическое распределение отличается от теоретического. Параметры эмпирического распределения и являются случайными величинами, следовательно, ошибки выборки также являются случайными величинами, могут принимать для разных выборок разные значения и поэтому принято вычислять среднюю ошибку .

Средняя ошибка выборки есть величина , выражающая среднее квадратическое отклонение выборочной средней от математического ожидания. Эта величина при соблюдении принципа случайного отбора зависит прежде всего от объема выборки и от степени варьирования признака: чем больше и чем меньше вариация признака (следовательно, и значение ), тем меньше величина средней ошибки выборки . Соотношение между дисперсиями генеральной и выборочной совокупностей выражается формулой:

т.е. при достаточно больших можно считать, что . Средняя ошибка выборки показывает возможные отклонения параметра выборочной совокупности от параметра генеральной. В табл. 9.2 приведены выражения для вычисления средней ошибки выборки при разных методах организации наблюдения.

Таблица 9.2 Средняя ошибка (m) выборочных средней и доли для разных видов выборки

Где - средняя из внутригрупповых выборочных дисперсий для непрерывного признака;

Средняя из внутригрупповых дисперсий доли;

— число отобранных серий, — общее число серий;

,

где — средняя -й серии;

— общая средняя по всей выборочной совокупности для непрерывного признака;

,

где — доля признака в -й серии;

— общая доля признака по всей выборочной совокупности.

Однако о величине средней ошибки можно судить лишь с определенной, вероятностью Р (Р ≤ 1). Ляпунов А.М. доказал, что распределение выборочных средних , a следовательно, и их отклонений от генеральной средней, при достаточно большом числе приближенно подчиняется нормальному закону распределения при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически это утверждение для средней выражается в виде:

а для доли выражение (1) примет вид:

где - есть предельная ошибка выборки , которая кратна величине средней ошибки выборки , а коэффициент кратности — есть критерий Стьюдента ("коэффициент доверия"), предложенный У.С. Госсетом (псевдоним "Student"); значения для разного объема выборки хранятся в специальной таблице.

Значения функции Ф(t) при некоторых значениях t равны:

Следовательно, выражение (3) может быть прочитано так: с вероятностью Р = 0,683 (68,3%) можно утверждать, что разность между выборочной и генеральной средней не превысит одной величины средней ошибки m (t = 1) , с вероятностью Р = 0,954 (95,4%) — что она не превысит величины двух средних ошибок m (t = 2) , с вероятностью Р = 0,997 (99,7%) — не превысит трех значений m (t = 3) . Таким образом, вероятность того, что эта разность превысит трехкратную величину средней ошибки определяет уровень ошибки и составляет не более 0,3% .

В табл. 9.3 приведены формулы для вычисления предельной ошибки выборки.

Таблица 9.3 Предельная ошибка (D) выборки для средней и доли (р) для разных видов выборочного наблюдения

Распространение выборочных результатов на генеральную совокупность

Конечной целью выборочного наблюдения является характеристика генеральной совокупности. При малых объемах выборки эмпирические оценки параметров ( и ) могут существенно отклоняться от их истинных значений ( и ). Поэтому возникает необходимость установить границы, в пределах которых для выборочных значений параметров ( и ) лежат истинные значения ( и ).

Доверительным интервалом какого-либо параметра θгенеральной совокупности называется случайная область значений этого параметра, которая с вероятностью близкой к 1 (надежностью ) содержит истинное значение этого параметра.

Предельная ошибка выборки Δ позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы , которые равны:

Нижняя граница доверительного интервала получена путем вычитания предельной ошибки из выборочного среднего (доли), а верхняя — путем ее добавления.

Доверительный интервал для средней использует предельную ошибку выборки и для заданного уровня достоверности определяется по формуле:

Это означает, что с заданной вероятностью Р , которая называется доверительным уровнем и однозначно определяется значением t , можно утверждать, что истинное значение средней лежит в пределах от ,а истинное значение доли — в пределах от

При расчете доверительного интервала для трех стандартных доверительных уровней Р = 95%, Р = 99% и Р = 99,9% значение выбирается по . Приложения в зависимости от числа степеней свободы . Если объем выборки достаточно велик, то соответствующие этим вероятностям значения t равны: 1,96, 2,58 и 3,29 . Таким образом, предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы:

Распространение результатов выборочного наблюдения на генеральную совокупность в социально-экономических исследованиях имеет свои особенности, так как требует полноты представительности всех ее типов и групп. Основой для возможности такого распространения является расчет относительной ошибки :

где Δ % - относительная предельная ошибка выборки; , .

Существуют два основных метода распространения выборочного наблюдения на генеральную совокупность: прямой пересчет и способ коэффициентов .

Сущность прямого пересчета заключается в умножении выборочного среднего значения!!\overline{x} на объем генеральной совокупности .

Пример . Пусть среднее число детей ясельного возраста в городе оценено выборочным методом и составило человека. Если в городе 1000 молодых семей, то число необходимых мест в муниципальных детских яслях получают умножением этой средней на численность генеральной совокупности N = 1000, т.е. составит 1200 мест.

Способ коэффициентов целесообразно использовать в случае, когда выборочное наблюдение проводится с целью уточнения данных сплошного наблюдения.

При этом используют формулу:

где все переменные — это численность совокупности:

Необходимый объем выборки

Таблица 9.4 Необходимый объем (n) выборки для разных видов организации выборочного наблюдения

При планировании выборочного наблюдения с заранее заданным значением допустимой ошибки выборки необходимо правильно оценить требуемый объем выборки . Этот объем может быть определен на основе допустимой ошибки при выборочном наблюдении исходя из заданной вероятности , гарантирующей допустимую величину уровня ошибки (с учетом способа организации наблюдения). Формулы для определения необходимой численности выборки n легко получить непосредственно из формул предельной ошибки выборки. Так, из выражения для предельной ошибки:

непосредственно определяется объем выборки n :

Эта формула показывает, что с уменьшением предельной ошибки выборки Δ существенно увеличивается требуемый объем выборки , который пропорционален дисперсии и квадрату критерия Стьюдента .

Для конкретного способа организации наблюдения требуемый объем выборки вычисляется согласно формулам, приведенным в табл. 9.4.

Практические примеры расчета

Пример 1. Вычисление среднего значения и доверительного интервала для непрерывного количественного признака.

Для оценки скорости расчета с кредиторами в банке проведена случайная выборка 10 платежных документов. Их значения оказались равными (в днях): 10; 3; 15; 15; 22; 7; 8; 1; 19; 20.

Необходимо с вероятностью Р = 0,954 определить предельную ошибку Δ выборочной средней и доверительные пределы среднего времени расчетов.

Решение. Среднее значение вычисляется по формуле из табл. 9.1 для выборочной совокупности

Дисперсия вычисляется по формуле из табл. 9.1.

Средняя квадратическая погрешность дня.

Ошибка средней вычисляется по формуле:

т.е. среднее значение равно x ± m = 12,0 ± 2,3 дней .

Достоверность среднего составила

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, и для Р = 0,954 уровня достоверности.

Таким образом, среднее значение равно `x ± D = `x ± 2m = 12,0 ± 4,6, т.е. его истинное значение лежит в пределах от 7,4 до16,6 дней.

Использование таблицы Стьюдента. Приложения позволяет заключить, что для n = 10 — 1 = 9 степеней свободы полученное значение достоверно с уровнем значимости a £ 0,001, т.е. полученное значение среднего достоверно отличается от 0.

Пример 2. Оценка вероятности (генеральной доли) р.

При механическом выборочном способе обследования социального положения 1000 семей выявлено, что доля малообеспеченных семей составила w = 0,3 (30%) (выборка была 2% , т.е. n/N = 0,02 ). Необходимо с уровнем достоверности р = 0,997 определить показатель р малообеспеченных семей во всем регионе.

Решение. По представленным значениям функции Ф(t) найдем для заданного уровня достоверности Р = 0,997 значение t = 3 (см. формулу 3). Предельную ошибку доли w определим по формуле из табл. 9.3 для бесповторного отбора (механическая выборка всегда является бесповторной):

Предельная относительная ошибка выборки в % составит:

Вероятность (генеральная доля) малообеспеченных семей в регионе составит р=w±Δ w , а доверительные пределы р вычисляются исходя из двойного неравенства:

w — Δ w ≤ p ≤ w — Δ w , т.е. истинное значение р лежит в пределах:

0,3 — 0,014 < p <0,3 + 0,014, а именно от 28,6% до 31,4%.

Таким образом, с вероятностью 0,997 можно утверждать, что доля малообеспеченных семей среди всех семей региона составляет от 28,6% до 31,4%.

Пример 3. Вычисление среднего значения и доверительного интервала для дискретного признака, заданного интервальным рядом.

В табл. 9.5. задано распределение заявок на изготовление заказов по срокам их выполнения предприятием.

Таблица 9.5 Распределение наблюдений по срокам появления

Решение. Средний срок выполнения заявок вычисляется по формуле:

Средний срок составит:

= (3*20 + 9*80 + 24*60 + 48*20 + 72*20)/200 = 23,1 мес.

Тот же ответ получим, если используем данные о р i из предпоследней колонки табл. 9.5, используя формулу:

Заметим, что середина интервала для последней градации находится путем искусственного ее дополнения шириной интервала предыдущей градации равной 60 — 36 = 24 мес.

Дисперсия вычисляется по формуле

где х i - середина интервального ряда.

Следовательно!!\sigma = \frac {20^2 + 14^2 + 1 + 25^2 + 49^2}{4}, а средняя квадратическая погрешность .

Ошибка средней вычисляется по формуле мес., т.е. среднее значение равно!!\overline{x} ± m = 23,1 ± 13,4.

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, для 0,954 уровня достоверности:

Таким образом, среднее значение равно:

т.е. его истинное значение лежит в пределах от 0 до 50 мес.

Пример 4. Для определения скорости расчетов с кредиторами N = 500 предприятий корпорации в коммерческом банке необходимо провести выборочное исследование методом случайного бесповторного отбора. Определить необходимый объем выборки n, чтобы с вероятностью Р = 0,954 ошибка среднего значения выборки не превышала 3-х дней, если пробные оценки показали, что среднее квадратическое отклонение s составило 10 дней.

Решение . Для определения числа необходимых исследований n воспользуемся формулой для бесповторного отбора из табл. 9.4:

В ней значение t определяется из для уровня достоверности Р = 0,954. Оно равно 2. Среднее квадратическое значение s = 10, объем генеральной совокупности N = 500, а предельная ошибка среднего значения Δ x = 3. Подставляя эти значения в формулу, получим:

т.е. выборку достаточно составить из 41 предприятия, чтобы оценить требуемый параметр — скорость расчетов с кредиторами.

Выбор редакции
Откуда вышел на свет глава Национальной гвардии, экс-охранник Владимира Путина Виктор Золотов, разбирался Sobesednik.ru.Попал точно в...

НПО «Квантовые технологии» — не первый опыт Романа Золотова в бизнесе. Несколько лет назад он входил в совет директоров Корпорация...

Медицинские эксперты рассматривают рак как комплекс заболеваний, связанных с различными факторами. В первую очередь, люди имеют...

Крепость Орешек — один из важнейших плацдармов обороны Российской империи вплоть до Второй мировой войны. Долгое время выполняла роль...
09сен2019 Серия - Young Adult. Нечто темное и святое ISBN: 978-5-04-103766-6, Young Adult. Нечто темное и святоеАвтор: разныеГод...
© Оформление. ООО «Издательство „Э“», 2017 © FLPA / Rebecca Hosking / DIOMEDIA © Mike Hayward Archive / Alamy / DIOMEDIA © Kristoffer...
Я жду, пока ко мне вернется голос. Вероятно, вместе с ним вернутся слова. А может быть, и нет. Может быть, некоторое время придется...
Автор Карина Добротворская Любить больно. Будто дала позволение освежевать себя, зная, что тот, другой, может в любую минуту удалиться с...
КАК УЗНАТЬ СВОЕ ПРЕДНАЗНАЧЕНИЕ ПО ДАТЕ РОЖДЕНИЯ!Советуем внимательно изучить этот нелегкий материал, примерить его к себе и внести...