Что такое свинец и где он применяется? Свинец и его свойства.


СВИНЕЦ, Pb (лат. plumbum * а. lead, plumbum; н. Blei; ф. plomb; и. plomo), — химический элемент IV группы периодической системы Менделеева , атомный номер 82, атомная масса 207,2. Природный свинец представлен четырьмя стабильными 204 Pb (1,48%), 206 Pb (23,6%), 207 Pb (22,6%) и 208 Pb (52,3%) и четырьмя радиоактивными 210 Pb, 211 Pb, 212 Pb и 214 Pb изотопами; кроме того, получено более десяти искусственных радиоактивных изотопов свинца. Известен с древних времён.

Физические свойства

Свинец — мягкий пластичный синевато-серый металл; кристаллическая решётка кубическая гранецентрированная (а=0,49389 нм). Атомный радиус свинца 0,175 нм, ионный радиус 0,126 нм (Pb 2+) и 0,076 нм (Pb 4+). Плотность 11 340 кг/м 3 , t плавления 327,65°С, t кипения 1745°С, теплопроводность 33,5 Вт/(м.град), теплоёмкость Cp° 26,65 Дж/(моль.К), удельное электрическое сопротивление 19,3.10 -4 (Ом.м), температурный коэффициент линейного расширения 29,1.10 -6 К -1 при 20°С. Свинец диамагнитен, при 7,18 К становится сверхпроводником.

Химические свойства свинца

Степень окисления +2 и +4. Свинец сравнительно мало химически активен. На воздухе свинец довольно быстро покрывается тонкой плёнкой оксида, предохраняющей его от дальнейшего окисления. Хорошо реагирует с азотной и уксусной кислотами, растворами щелочей, не взаимодействует с соляной и серной кислотами. При нагревании свинец взаимодействует с галогенами, серой , селеном , таллием . Азид свинца Pb(N 3) 2 разлагается при нагревании или ударе со взрывом . Соединения свинца токсичны , ПДК 0,01 мг/м 3 .

Среднее содержание (кларк) свинца в земной коре 1,6.10 -3 % по массе, при этом ультраосновные и основные горные породы содержат меньше свинца (1.10 -5 и 8.10 -3 % соответственно), чем кислые (10 -3 %); в осадочных горных породах — 2.10 -3 %. Свинец накапливается главным образом в результате гидротермальных и гипергенных процессов, нередко образуя крупные месторождения. Существует более 100 минералов свинца, среди которых наиболее важное значение имеют галенит (PbS), церуссит (PbCО 3), англезит (PbSО 4). Одна из особенностей свинца состоит в том, что из четырёх стабильных изотопов один (204 Pb) нерадиогенный и, следовательно, количество его остаётся постоянным, а три других (206 Pb, 207 Pb и 208 Pb) — конечные продукты радиоактивного распада 238 U, 235 U и 232 Th соответственно, вследствие чего их количество постоянно возрастает. Изотопный состав Pb Земли за 4,5 млрд. лет изменился от первичного 204 Pb (1,997%), 206 Pb (18,585%), 207 Pb (20,556%), 208 Pb (58,861%) до современного 204 Pb (1,349%), 206 Pb (25,35%), 207 Pb (20,95%), 208 Pb (52,349%). Изучая изотопный состав свинца в горных породах и рудах , можно устанавливать генетические соотношения, решать разнообразные вопросы геохимии , геологии , тектоники отдельных регионов и Земли в целом и т.д. Изотопные исследования свинца применяются и в поисково-разведочных работах. Широкое развитие получили также методы U-Th-Pb геохронологии , основанные на изучении количественных соотношений между материнскими и дочерними изотопами в горных породах и минералах. В биосфере свинец рассеян, его очень мало в живом веществе (5.10 -5 %) и в морской воде (3.10 -9 %). В промышленно развитых странах концентрация свинца в воздухе, особенно вблизи автомобильных дорог с интенсивным движением, резко возрастает, достигая в отдельных случаях опасных содержаний для здоровья людей.

Получение и применение

Металлический свинец получают окислительным обжигом сульфидных руд с последующим восстановлением PbO до чернового металла и рафинированием последнего. В черновом свинца содержится до 98% Pb, в рафинированном — 99,8-99,9%. Дальнейшая очистка свинца до значений, превышающих 99,99%, проводится с помощью электролиза. Для получения особо чистого металла применяют методы амальгамации , зонной перекристаллизации и др.

Свинец широко применяется в производстве свинцовых аккумуляторов, для изготовления аппаратуры, устойчивой в агрессивных средах и газах. Из свинца изготавливают оболочки электрических кабелей и различные сплавы. Широкое применение нашёл свинец при изготовлении средств защиты от ионизирующих излучений. Оксид свинца добавляют в шихту при производстве хрусталя. Соли свинца используются при производстве красителей, азид свинца — как инициирующее взрывчатое вещество , а тетраэтилсвинец Pb(С 2 Н 5) 4 — как антидетонатор горючего для двигателей внутреннего сгорания.

Свинец (лат. Plumbum), Pb, химический элемент IV группы периодической системы Менделеева; атомный номер 82, атомная масса 207,2. Свинец - тяжелый металл голубовато-серого цвета, очень пластичный, мягкий (режется ножом, царапается ногтем). Природный Свинец состоит из 5 стабильных изотопов с массовыми числами 202 (следы), 204 (1,5%), 206 (23,6%), 207 (22,6%), 208 (52,3%). Последние три изотопа - конечные продукты радиоактивных превращений 238 U, 235 U и 232 Th. При ядерных реакциях образуются многочисленные радиоактивные изотопы Свинца.

Историческая справка. Свинец был известен за 6-7 тысяч лет до н. э. народам Месопотамии, Египта и других стран древнего мира. Он служил для изготовления статуй, предметов домашнего обихода, табличек для письма. Римляне пользовались свинцовыми трубами для водопроводов. Алхимики называли Свинец Сатурном и обозначали его знаком этой планеты. Соединения Свинец - "свинцовая зола" РbО, свинцовые белила 2РbСО 3 ·Рb(ОН) 2 применялись в Древней Греции и Риме как составные части лекарств и красок. Когда было изобретено огнестрельное оружие, Свинец начали применять как материал для пуль. Ядовитость Свинца отметили еще в 1 веке н. э. греческий врач Диоскорид и Плиний Старший.

Распространение Свинца в природе. Содержание Свинца в земной коре (кларк) 1,6·10 -3 % по массе. Образование в земной коре около 80 минералов, содержащих Свинец (главный из них галенит PbS), связано в основном с формированием гидротермальных месторождений. В зонах окисления полиметаллических руд образуются многочисленные (около 90) вторичные минералы: сульфаты (англезит PbSO 4), карбонаты (церуссит РbCO 3), фосфаты [пироморфит Рb 5 (РО 4) 3 Сl].

В биосфере Свинец в основном рассеивается, его мало в живом веществе (5·10 -5 %), морской воде (3·10 -9 %). Из природных вод Свинец отчасти сорбируется глинами и осаждается сероводородом, поэтому он накапливается в морских илах с сероводородным заражением и в образовавшихся из них черных глинах и сланцах.

Физические свойства Свинца. Свинец кристаллизуется в гранецентрированной кубической решетке (а = 4,9389Å), аллотропических модификаций не имеет. Атомный радиус 1,75Å, ионные радиусы: Рb 2+ 1,26Å, Рb 4+ 0,76Å; плотность 11,34 г/см 3 (20 °С); t пл 327,4 °С; t кип 1725 °С; удельная теплоемкость при 20 °С 0,128 кДж/(кг·К) | теплопроводность 33,5 вт/(м·К); температурный коэффициент линейного расширения 29,1·10 -6 при комнатной температуре; твердость по Бринеллю 25-40 Мн/м 2 (2,5-4 кгс/мм 2); предел прочности при растяжении 12-13 Мн/м 2 , при сжатии около 50 Мн/м 2 ; относительное удлинение при разрыве 50-70%. Наклеп не повышает механических свойств Свинца, так как температура его рекристаллизации лежит ниже комнатной (около -35 °С при степени деформации 40% и выше). Свинец диамагнитен, его магнитная восприимчивость -0,12·10 -6 . При 7,18 К становится сверхпроводником.

Химические свойства Свинца. Конфигурация внешних электронных оболочек атома Pb 6s 2 6р 2 , в соответствии с чем он проявляет степени окисления +2 и +4. Свинец сравнительно мало активен химически. Металлический блеск свежего разреза Свинца постепенно исчезает на воздухе вследствие образования тончайшей пленки РbО, предохраняющей от дальнейшего окисления.

С кислородом образует ряд оксидов Рb 2 О, РbО, РbО 2 , Рb 3 О 4 и Рb 2 О 3 .

В отсутствие О 2 вода при комнатной температуре на Свинец не действует, но он разлагает горячий водяной пар с образованием оксида Свинца и водорода. Соответствующие оксидам РbО и РbО 2 гидрооксиды Рb(ОН) 2 и Рb(ОН) 4 имеют амфотерный характер.

Соединение Свинца с водородом РbН 4 получается в небольших количествах при действии разбавленной соляной кислоты на Mg 2 Pb. PbH 4 - бесцветный газ, который очень легко разлагается на Pb и Н 2 . При нагревании Свинец соединяется с галогенами, образуя галогениды РbХ 2 (X -галоген). Все они малорастворимы в воде. Получены также галогениды РbХ 4: тетрафторид PbF 4 - бесцветные кристаллы и тетрахлорид РbСl 4 - желтая маслянистая жидкость. Оба соединения легко разлагаются, выделяя F 2 или Cl 2 ; гидролизуются водой. С азотом Свинец не реагирует. Азид свинца Pb(N 3) 2 получают взаимодействием растворов азида натрия NaN 3 и солей Рb (II); бесцветные игольчатые кристаллы, труднорастворимые в воде; при ударе или нагревании разлагается на Pb и N 2 со взрывом. Сера действует на Свинец при нагревании с образованием сульфида PbS - черного аморфного порошка. Сульфид может быть получен также при пропускании сероводорода в растворы солей Pb (II); в природе встречается в виде свинцового блеска - галенита.

В ряду напряжений Pb стоит выше водорода (нормальные электродные потенциалы соответственно равны -0,126 в для Рb = Рb 2+ + 2е и +0,65 в для Pb = Pb 4+ + 4е). Однако Свинец не вытесняет водород из разбавленной соляной и серной кислот, вследствие перенапряжения Н 2 на Pb, а также образования на поверхности металла защитных пленок трудно-растворимых хлорида РbCl 2 и сульфата PbSO 4 . Концентрированные H 2 SO 4 и НCl при нагревании действуют на Pb, причем получаются растворимые комплексные соединения состава Pb(HSO 4) 2 и Н 2 [РbCl 4 ]. Азотная, уксусная, а также некоторые органических кислоты (например, лимонная) растворяют Свинец с образованием солей Рb (II). По растворимости в воде соли делятся на растворимые (ацетат, нитрат и хлорат свинца), малорастворимые (хлорид и фторид) и нерастворимые (сульфат, карбонат, хромат, фосфат, молибдат и сульфид). Соли Pb (IV) могут быть получены электролизом сильно подкисленных H 2 SO 4 растворов солей Рb (II); важнейшие из солей Pb (IV)- сульфат Pb(SO 4) 2 и ацетат Рb(С 2 Н 3 О 2) 4 . Соли Pb (IV) склонны присоединять избыточные отрицательные ионы с образованием комплексных анионов, например, плюмбатов (РbО 3) 2- и (РbО 4) 4- , хлороплюмбатов (РbCl 6) 2- , гидроксоплюмбатов [Рb(ОН) 6 ] 2- и других. Концентрированные растворы едких щелочей при нагревании реагируют с Pb с выделением водорода и гидроксоплюмбитов типа Х 2 [Рb(ОН) 4 ].

Получение Свинца. Металлический Свинец получают окислительным обжигом PbS с последующим восстановлением РbО до сырого Pb ("веркблея") и рафинированием (очисткой) последнего. Окислительный обжиг концентрата ведется в агломерационных ленточных машинах непрерывного действия. При обжиге PbS преобладает реакция:

2PbS + ЗО 2 = 2РbО + 2SO 2 .

Кроме того, получается и немного сульфата PbSO 4 , который переводят в силикат PbSiO 3 , для чего в шихту добавляют кварцевый песок. Одновременно окисляются и сульфиды других металлов (Cu, Zn, Fe), присутствующие как примеси. В результате обжига вместо порошкообразной смеси сульфидов получают агломерат - пористую спекшуюся сплошную массу, состоящую преимущественно из оксидов РbО, CuO, ZnO, Fe 2 O 3 . Куски агломерата смешивают с коксом и известняком и эту смесь загружают в ватержакетную печь, в которую снизу через трубы ("фурмы") подают воздух под давлением. Кокс и оксид углерода (II) восстанавливают РbО до Pb уже при невысоких температурах (до 500 °С). При более высоких температурах идут реакции:

СаСО 3 = СаО + СО 2

2РbSiO 3 + 2СаО + С = 2Рb + 2CaSiO 3 + CO 2 .

Оксиды Zn и Fe частично переходят в ZnSiO 3 и FeSiO 3 , которые вместе с CaSiO 3 образуют шлак, всплывающий на поверхность. Оксиды Свинца восстанавливаются до металла. Сырой Свинец содержит 92-98% Pb, остальное - примеси Cu, Ag (иногда Au), Zn, Sn, As, Sb, Bi, Fe. Примеси Cu и Fe удаляют зейгерованием. Для удаления Sn, As, Sb через расплавленный металл продувают воздух. Выделение Ag (и Au) производится добавкой Zn, который образует "цинковую пену", состоящую из соединений Zn с Ag (и Au), более легких, чем Рb, и плавящихся при 600-700 °C. Избыток Zn удаляют из расплавленного Рb пропусканием воздуха, водяного пара или хлора. Для очистки от Bi к жидкому Рb добавляют Са или Mg, дающие трудноплавкие соединения Ca 3 Bi 2 и Mg 3 Bi 2 . Рафинированный этими способами Свинец содержит 99,8-99,9% Рb. Дальнейшая очистка производится электролизом, в результате чего достигается чистота не менее 99,99%.

Применение Свинца. Свинец широко применяют в производстве свинцовых аккумуляторов, используют для изготовления заводской аппаратуры, стойкой в агрессивных газах и жидкостях. Свинец сильно поглощает γ-лучи и рентгеновские лучи, благодаря чему его применяют как материал для защиты от их действия (контейнеры для хранения радиоактивных веществ, аппаратура рентгеновских кабинетов и других). Большие количества Свинца идут на изготовление оболочек электрических кабелей, защищающих их от коррозии и механических повреждений. На основе Свинца изготовляют многие свинцовые сплавы. Оксид Свинца РbО вводят в хрусталь и оптическое стекло для получения материалов с большим показателем преломления. Сурик, хромат (желтый крон) и основные карбонат Свинца (свинцовые белила) - ограниченно применяемые пигменты. Хромат Свинца - окислитель, используется в аналитической химии. Азид и стифиат (тринитрорезорцинат) - инициирующие взрывчатые вещества. Тетраэтилсвинец - антидетонатор. Ацетат Свинца служит индикатором для обнаружения H 2 S. В качестве изотопных индикаторов используются 204 Рb (стабильный) и 212 Рb (радиоактивный).

Свинец в организме. Растения поглощают Свинец из почвы, воды и атмосферных выпадений. В организм человека Свинец попадает с пищей (около 0,22 мг), водой (0,1 мг), пылью (0,08 мг). Безопасный суточный уровень поступления Свинца для человека 0,2-2 мг. Выделяется главным образом с калом (0,22-0,32 мг), меньше с мочой (0,03-0,05 мг). В теле человека содержится в среднем около 2 мг Свинца (в отдельных случаях - до 200 мг). У жителей промышленно развитых стран содержание Свинца в организме выше, чем у жителей аграрных стран, у горожан выше, чем у сельских жителей. Основное депо Свинца - скелет (90% всего Свинца организма): в печени накапливается 0,2-1,9 мкг/г; в крови - 0,15-0,40 мкг/мл; в волосах - 24 мкг/г, в молоке- 0,005-0,15 мкг/мл; содержится также в поджелудочной железе, почках, головном мозге и других органах. Концентрация и распределение Свинца в организме животных близки к показателям, установленным для человека. При повышении уровня Свинца в окружающей среде возрастает его отложение в костях, волосах, печени.

Отравления Свинцом и его соединениями возможны при добыче руд, выплавке Свинец, при производстве свинцовых красок, в полиграфии, гончарном, кабельном производствах, при получении и применении тетраэтилсвинца и др. Бытовые отравления возникают редко и наблюдаются при употреблении в пищу продуктов, которые длительно хранили в глиняной посуде, покрытой глазурью, содержащей свинцовый сурик или глет. Свинец и его неорганические соединения в виде аэрозолей проникают в организм в основном через дыхательные пути, в меньшей степени - через желудочно-кишечный тракт и кожу. В крови Свинец циркулирует в виде высокодисперсных коллоидов - фосфата и альбумината. Выделяется Свинец в основном через кишечник и почки. В развитии интоксикации играют роль нарушение порфиринового, белкового, углеводного и фосфатного обменов, дефицит витаминов С и B 1 , функциональные и органических изменения центральной и вегетативной нервной системы, токсичное влияние Свинец на костный мозг. Отравления могут быть скрытыми (так называемое носительство), протекать в легкой, средней тяжести и тяжелой формах.

Наиболее частые признаки отравления Свинец: кайма (полоска лиловато-аспидного цвета) по краю десен, землисто-бледная окраска кожных покровов; ретикулоцитоз и других изменения крови, повышенное содержание порфиринов в моче, наличие в моче Свинца в количествах 0,04-0,08 мг/л и более и т. д. Поражение нервной системы проявляется астенией, при выраженных формах - энцефалопатией, параличами (преимущественно разгибателей кисти и пальцев рук), полиневритом. При так называемых свинцовой колике возникают резкие схваткообразные боли в животе, запор, продолжающиеся от нескольких часов до 2-3 недель; нередко колика сопровождается тошнотой, рвотой, подъемом артериального давления, температуры тела до 37,5-38 °C. При хронической интоксикации возможны поражения печени, сердечно-сосудистой системы, нарушение эндокринных функций (например, у женщин - выкидыши, дисменорея, меноррагии и других). Угнетение иммунобиологической реактивности способствует повышенной общей заболеваемости.

Свинец (лат. plumbum), pb, химический элемент iv группы периодической системы Менделеева; атомный номер 82, атомная масса 207,2. С. - тяжёлый металл голубовато-серого цвета, очень пластичный, мягкий (режется ножом, царапается ногтем). Природный С. состоит из 5 стабильных изотопов с массовыми числами 202 (следы), 204 (1,5%), 206 (23,6%), 207 (22,6%), 208 (52,3%). Последние три изотопа - конечные продукты радиоактивных превращений 238 u, 235 u и 232 th. При ядерных реакциях образуются многочисленные радиоактивные изотопы С. Историческая справка. С. был известен за 6-7 тыс. лет до н. э. народам Месопотамии, Египта и других стран древнего мира. Он служил для изготовления статуй, предметов домашнего обихода, табличек для письма. Римляне пользовались свинцовыми трубами для водопроводов. Алхимики называли С. сатурном и обозначали его знаком этой планеты. Соединения С. - «свинцовая зола» pbo, свинцовые белила 2pbco 3 pb (oh) 2 применялись в Древней Греции и Риме как составные части лекарств и красок. Когда было изобретено огнестрельное оружие, С. начали применять как материал для пуль. Ядовитость С. отметили ещё в 1 в. н. э. греческий врач Диоскорид и Плиний Старший, Распространение в природе. Содержание С. в земной коре (кларк) 1,6 · 10 -3 % по массе. Образование в земной коре около 80 минералов, содержащих С. (главный из них галенит pbs), связано в основном с формированием гидротермальных месторождений . В зонах окисления полиметаллических руд образуются многочисленные (около 90) вторичные минералы: сульфаты (англезит pbso 4), карбонаты (церуссит pbco 3), фосфаты [пироморфит pb 5 (po 4) 3 cl]. В биосфере С. в основном рассеивается, его мало в живом веществе (5 · 10 -5 %), морской воде (3 · 10 -9 %). Из природных вод С. отчасти сорбируется глинами и осаждается сероводородом, поэтому он накапливается в морских илах с сероводородным заражением и в образовавшихся из них чёрных глинах и сланцах, Физические и химические свойства. С. кристаллизуется в гранецентрированной кубической решётке (а = 4,9389 å), аллотропических модификаций не имеет. Атомный радиус 1,75 å, ионные радиусы: pb 2+ 1,26å, pb 4+ 0,76 å: плотность 11,34 г/см 3 (20°С); t nл 327,4 °С; t kип 1725 °С; удельная теплоёмкость при 20°С 0,128 кдж/ (кг · К ) ; теплопроводность 33,5 вт/ (м · К ) ; температурный коэффициент линейного расширения 29,1 · 10 -6 при комнатной температуре; твёрдость по Бринеллю 25-40 Мн/м 2 (2,5-4 кгс/мм 2 ) ; предел прочности при растяжении 12-13 Мн/м 2 , при сжатии около 50 Мн/м 2 ; относительное удлинение при разрыве 50-70%. Наклёп не повышает механических свойств С., т. к. температура его рекристаллизации лежит ниже комнатной (около -35 °С при степени деформации 40% и выше). С. диамагнитен, его магнитная восприимчивость - 0,12 · 10 -6 . При 7,18 К становится сверхпроводником.

Конфигурация внешних электронных оболочек атома pb 6s 2 6р 2 , в соответствии с чем он проявляет степени окисления +2 и +4. С. сравнительно мало активен химически. Металлический блеск свежего разреза С. постепенно исчезает на воздухе вследствие образования тончайшей плёнки pbo, предохраняющей от дальнейшего окисления. С кислородом образует ряд окислов pb 2 o, pbo, pbo 2 , pb 3 o 4 и pb 2 o 3.

В отсутствие o 2 вода при комнатной температуре на С. не действует, но он разлагает горячий водяной пар с образованием окиси С. и водорода. Соответствующие окислам pbo и pbo 2 гидроокиси pb (oh) 2 и pb (oh) 4 имеют амфотерный характер.

Соединение С. с водородом pbh 4 получается в небольших количествах при действии разбавленной соляной кислоты на mg 2 pb. pbh 4 - бесцветный газ, который очень легко разлагается на pb и h 2 . При нагревании С. соединяется с галогенами, образуя галогениды pbx 2 (x - галоген). Все они малорастворимы в воде. Получены также галогениды pbx 4: тетрафторид pbf 4 - бесцветные кристаллы и тетрахлорид pbcl 4 - жёлтая маслянистая жидкость. Оба соединения легко разлагаются, выделяя f 2 или cl 2 ; гидролизуются водой. С азотом С. не реагирует . Азид свинца pb (n 3 ) 2 получают взаимодействием растворов азида натрия nan 3 и солей pb (ii); бесцветные игольчатые кристаллы, труднорастворимые в воде; при ударе или нагревании разлагается на pb и n 2 со взрывом. Сера действует на С. при нагревании с образованием сульфида pbs - чёрного аморфного порошка. Сульфид может быть получен также при пропускании сероводорода в растворы солей pb (ii); в природе встречается в виде свинцового блеска - галенита.

В ряду напряжений pb стоит выше водорода (нормальные электродные потенциалы соответственно равны - 0,126 в для pb u pb 2+ + 2e и + 0,65 в для pb u pb 4+ + 4e). Однако С. не вытесняет водород из разбавленной соляной и серной кислот, вследствие перенапряжения h 2 на pb, а также образования на поверхности металла защитных плёнок труднорастворимых хлорида pbcl 2 и сульфата pbso 4 . Концентрированные h 2 so 4 и hcl при нагревании действуют на pb, причём получаются растворимые комплексные соединения состава pb (hso 4) 2 и h 2 . Азотная, уксусная, а также некоторые органические кислоты (например, лимонная) растворяют С. с образованием солей pb (ii). По растворимости в воде соли делятся на растворимые (ацетат, нитрат и хлорат свинца), малорастворимые (хлорид и фторид) и нерастворимые (сульфат, карбонат, хромат, фосфат, молибдат и сульфид). Соли pb (iv) могут быть получены электролизом сильно подкисленных h 2 so 4 растворов солей pb (ii); важнейшие из солей pb (iv) - сульфат pb (so 4) 2 и ацетат pb (c 2 h 3 o 2) 4 . Соли pb (iv) склонны присоединять избыточные отрицательные ионы с образованием комплексных анионов, например плюмбатов (pbo 3) 2- и (pbo 4) 4- , хлороплюмбатов (pbcl 6) 2- , гидроксоплюмбатов 2- и др. Концентрированные растворы едких щелочей при нагревании реагируют с pb с выделением водорода и гидроксоплюмбитов типа x 2 .

Получение. Металлический С. получают окислительным обжигом pbs с последующим восстановлением pbo до сырого pb («веркблея») и рафинированием (очисткой) последнего. Окислительный обжиг концентрата ведётся в агломерационных ленточных машинах непрерывного действия. При обжиге pbs преобладает реакция: 2pbs + 3o 2 = 2pbo + 2so 2 . Кроме того, получается и немного сульфата pbso 4 , который переводят в силикат pbsio 3 , для чего в шихту добавляют кварцевый песок. Одновременно окисляются и сульфиды других металлов (cu, zn, fe), присутствующие как примеси. В результате обжига вместо порошкообразной смеси сульфидов получают агломерат - пористую спекшуюся сплошную массу, состоящую преимущественно из окислов pbo, cuo, zno, fe 2 o 3 . Куски агломерата смешивают с коксом и известняком и эту смесь загружают в ватержакетную печь, в которую снизу через трубы («фурмы») подают воздух под давлением. Кокс и окись углерода восстанавливают pbo до pb уже при невысоких температурах (до 500 °С). При более высоких температурах идут реакции:

caco 3 = cao + co 2

2pbsio 3 + 2cao + С = 2pb + 2casio 3 + co 2 .

Окислы zn и fe частично переходят в znsio 3 и fesio 3 , которые вместе с casio 3 образуют шлак, всплывающий на поверхность. Окислы С. восстанавливаются до металла. Сырой С. содержит 92-98% pb, остальное - примеси cu, ag (иногда au), zn, sn, as, sb, bi, fe. Примеси cu и fe удаляют зейгерованием. Для удаления sn, as, sb через расплавленный металл продувают воздух. Выделение ag (и au) производится добавкой zn, который образует «цинковую пену», состоящую из соединений zn c ag (и au), более лёгких, чем pb, и плавящихся при 600-700 °С. Избыток zn удаляют из расплавленного pb пропусканием воздуха, водяного пара или хлора. Для очистки от bi к жидкому pb добавляют ca или mg, дающие трудноплавкие соединения ca 3 bi 2 и mg 3 bi 2 . Рафинированный этими способами С. содержит 99,8-99,9% pb. Дальнейшая очистка производится электролизом, в результате чего достигается чистота не менее 99,99%. Применение. С. широко применяют в производстве свинцовых аккумуляторов, используют для изготовления заводской аппаратуры, стойкой в агрессивных газах и жидкостях. С. сильно поглощает g -лучи и рентгеновские лучи, благодаря чему его применяют как материал для защиты от их действия (контейнеры для хранения радиоактивных веществ, аппаратура рентгеновских кабинетов и др.). Большие количества С. идут на изготовление оболочек электрических кабелей, защищающих их от коррозии и механических повреждений. На основе С. изготовляют многие свинцовые сплавы. Окись С. pbo вводят в хрусталь и оптическое стекло для получения материалов с большим показателем преломления. Сурик, хромат (жёлтый крон) и основной карбонат С. (свинцовые белила) - ограниченно применяемые пигменты. Хромат С. - окислитель, используется в аналитической химии. Азид и стифнат (тринитрорезорцинат) - инициирующие взрывчатые вещества. Тетраэтилсвинец - антидетонатор. Ацетат С. служит индикатором для обнаружения h 2 s. В качестве изотопных индикаторов используются 204 pb (стабильный) и 212 pb (радиоактивный).

С. А. Погодин.

С. в организме. Растения поглощают С. из почвы, воды и атмосферных выпадений. В организм человека С. попадает с пищей (около 0,22 мг ) , водой (0,1 мг ) , пылью (0,08 мг ) . Безопасный суточный уровень поступления С. для человека 0,2-2 мг. Выделяется главным образом с калом (0,22-0,32 мг ) , меньше с мочой (0,03-0,05 мг ) . В теле человека содержится в среднем около 2 мг С. (в отдельных случаях - до 200 мг ) . У жителей промышленно развитых стран содержание С. в организме выше, чем у жителей аграрных стран, у горожан выше, чем у сельских жителей. Основное депо С. - скелет (90% всего С. организма): в печени накапливается 0,2-1,9 мкг/г; в крови - 0,15-0,40 мкг/мл; в волосах - 24 мкг/г, в молоке -0,005-0,15 мкг/мл; содержится также в поджелудочной железе, почках, головном мозге и др. органах. Концентрация и распределение С. в организме животных близки к показателям, установленным для человека. При повышении уровня С. в окружающей среде возрастает его отложение в костях, волосах, печени. Биологические функции С. не установлены.

Ю. И. Раецкая.

Отравления С. и его соединениями возможны при добыче руд, выплавке С., при производстве свинцовых красок, в полиграфии, гончарном, кабельном производствах, при получении и применении тетраэтилсвинца и др. Бытовые отравления возникают редко и наблюдаются при употреблении в пищу продуктов, которые длительно хранили в глиняной посуде, покрытой глазурью, содержащей свинцовый сурик или глёт. С. и его неорганические соединения в виде аэрозолей проникают в организм в основном через дыхательные пути, в меньшей степени - через желудочно-кишечный тракт и кожу. В крови С. циркулирует в виде высокодисперсных коллоидов - фосфата и альбумината. Выделяется С. в основном через кишечник и почки. В развитии интоксикации играют роль нарушение порфиринового, белкового, углеводного и фосфатного обменов, дефицит витаминов С и b 1 , функциональные и органические изменения центральной и вегетативной нервной системы, токсическое влияние С. на костный мозг. Отравления могут быть скрытыми (т. н. носительство), протекать в лёгкой, средней тяжести и тяжёлой формах.

Наиболее частые признаки отравления С. : кайма (полоска лиловато-аспидного цвета) по краю дёсен, землисто-бледная окраска кожных покровов; ретикулоцитоз и другие изменения крови, повышенное содержание порфиринов в моче, наличие в моче С. в количествах 0,04-0,08 мг/л и более и т. д. Поражение нервной системы проявляется астенией, при выраженных формах - энцефалопатией, параличами (преимущественно разгибателей кисти и пальцев рук), полиневритом. При т. н. свинцовой колике возникают резкие схваткообразные боли в животе, запор, продолжающиеся от нескольких ч до 2-3 нед; нередко колика сопровождается тошнотой, рвотой, подъёмом артериального давления, температуры тела до 37,5-38 °С. При хронической интоксикации возможны поражения печени, сердечно-сосудистой системы, нарушение эндокринных функций (например, у женщин - выкидыши, дисменорея, меноррагии и др.). Угнетение иммунобиологической реактивности способствует повышенной общей заболеваемости.

Лечение: специфические (комплексонообразователи и др.) и общеукрепляющие (глюкоза, витамины и др.) средства, физиотерапия, санаторно-курортное лечение (Пятигорск, Мацеста, Серноводск). Профилактика: замена С. менее токсичными веществами (например, цинковые и титановые белила вместо свинцовых), автоматизация и механизация операций в производстве С., эффективная вытяжная вентиляция, индивидуальная защита рабочих, лечебное питание, периодическая витаминизация, предварительные и периодические медицинские осмотры.

Препараты С. используют в медицинской практике (только наружно) как вяжущие и антисептические средства. Применяют: свинцовую воду (при воспалительных заболеваниях кожи и слизистых оболочек), простой и сложный свинцовые пластыри (при гнойно-воспалительных заболеваниях кожи, фурункулах) и др.

Л. А. Каспаров.

Лит.: Андреев В. М., Свинец, в кн.: Краткая химическая энциклопедия, т. 4, М., 1965; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963; Чижиков Д. М., Металлургия свинца, в кн.: Справочник металлурга по цветным металлам, т. 2, М., 1947; Вредные вещества в промышленности, под ред. Н. В. Лазарева, 6 изд., ч. 2, Л., 1971; Тарабаева Г. И., Действие свинца на организм и лечебно-профилактические мероприятия, А.-А., 1961; Профессиональные болезни, 3 изд., М., 1973,

Свинец известен с III - II тысячелетия до н.э. в Месопотамии, Египте и других древних странах, где из него изготовляли большие кирпичи (чушки), статуи богов и царей, печати и различные предметы быта. Из свинца делали бронзу, а также таблички для письма острым твердым предметом. В более позднее время римляне стали изготовлять из свинца трубы для водопроводов. В древности свинец сопоставлялся с планетой Сатурн и часто именовался сатурном. В средние века благодаря своему тяжелому весу свинец играл особую роль в алхимических операциях, ему приписывали способность легко превращаться в золото.

Нахождение в природе, получение:

Содержание в земной коре 1,6·10 -3 % по массе. Самородный свинец встречается редко, круг пород, в которых он установлен, достаточно широк: от осадочных пород до ультраосновных интрузивных пород. В основном встречается в виде сульфидов (PbS - свинцовый блеск).
Получение свинца из свинцового блеска проводят путем обжигательно-реакционной плавки: сначала подвергают шихту неполному обжигу (при 500-600°С), при котором часть сульфида переходит в оксид и сульфат:
2PbS + 3О 2 = 2РbО + 2SO 2 PbS + 2О 2 = РbSO 4
Затем, продолжая нагревание, прекращают доступ воздуха; при этом оставшийся сульфид регирует с оксидом и сульфатом, образуя металлический свинец:
PbS + 2РbО = 3Рb + SO 2 PbS + РbSO 4 = 2Рb +2SO 2

Физические свойства:

Один из самых мягких металлов, легко режется ножом. Обычно покрыт более или менее толстой плёнкой оксидов грязно-серого цвета, при разрезании открывается блестящая поверхность, которая на воздухе со временем тускнеет. Плотность - 11,3415 г/см 3 (при 20°C). Температура плавления - 327,4°C, температура кипения - 1740°C

Химические свойства:

При большой температуре свинец образует с галогенами соединения вида РbХ 2 , с азотом прямо не реагирует, при нагревании с серой образует сульфид PbS, кислородом окисляется до PbO.
В отсутствии кислорода свинец не реагирует с водой при комнатной температуре, но при действии горячего водяного пара образует оксиды свинца и водород. В ряду напряжений свинец стоит левее водорода, но он не вытесняет водород из разбавленных HCl и H 2 SO 4 , из-за перенапряжения выделения Н 2 на свинце, а также из-за образования на поверхности металла плёнки труднорастворимых солей, защищающих металл от дальнейшего действия кислот.
В концентрированных серной и соляной кислотах при нагревании свинец растворяется, образуя соответственно Pb(HSO 4) 2 и Н 2 [РbCl 4 ]. Азотная, а также некоторые органические кислоты (например, лимонная) растворяют свинец с получением солей Рb(II). Реагирует свинец и с концентрированными растворами щелочей:
Pb + 8HNO 3 (разб.,гор.) = 3Pb(NO 3) 2 + 2NO + 4H 2 O.
Pb + 3H 2 SO 4 (>80%) = Pb(HSO 4) 2 + SO 2 + 2H 2 O
Pb + 2NаOН (конц.) + 2H 2 O = Nа 2 + Н 2
Для свинца наиболее характерны соединения со степенью окисления: +2 и +4.

Важнейшие соединения:

Оксиды свинца - с кислородом свинец образует ряд соединений Рb 2 О, РbО, Рb 2 О 3 , Рb 3 О 4 , РbО 2 , преимущественно амфотерного характера. Многие из них окрашены в красные, жёлтые, чёрные, коричневые цвета.
Оксид свинца (II) - РbО. Красный (низкотемпературная a -модификация, глет) или желтый (высокотемпературная b -модификация, массикот). Термически устойчив. Очень плохо реагируют с водой, раствором аммиака. Проявляет амфотерные свойства, реагирует с кислотами и щелочами. Окисляется кислородом, восстанавливается водородом и монооксидом углерода.
Оксид свинца (IV) - РbО 2 . Платтнерит. Темно-коричневый, тяжелый порошок, при слабом нагревании разлагается без плавления. Не реагирует с водой, разбавленными кислотами и щелочами, раствором аммиака. Разлагается концентрированными кислотами, концентрированными щелочами при кипячении медленно переводится в раствор с образованием....
Сильный окислитель в кислой и щелочной среде.
Оксидам РbО и РbО 2 соответствуют амфотерные гидрооксиды Рb(ОН) 2 и Рb(ОН) 4 . Получение..., Свойства...
Рb 3 О 4 - свинцовый сурик . Рассматривается как смешаный оксид или орто-плюмбат свинца(II) - Рb 2 PbО 4 . Оранжево-красный порошок. При сильном нагревании разлагается, плавится только под избыточном давлением О 2 . Не реагирует с водой, гидратом аммиака. Разлагается конц. кислотами и щелочами. Сильный окислитель.
Соли свинца(II) . Как правило бесцветны, по растворимости в воде делятся на нерастворимые (например, сульфат, карбонат, хромат, фосфат, молибдат и сульфид), малорастворимые (йодид, хлорид и фторид) и растворимые (к примеру, ацетат, нитрат и хлорат свинца). Ацетат свинца, или свинцовый сахар , Pb(CH 3 COO) 2 ·3H 2 O, бесцветные кристаллы или белй порошок сладкого вкуса, медленно выветривается с потерей гидратной воды, относится к очень ядовитым веществам.
Халькогениды свинца - PbS, PbSe, и PbTe - кристаллы чёрного цвета, узкозонные полупроводники.
Соли свинца(IV) могут быть получены электролизом сильно подкисленных серной кислотой растворов солей свинца(II). Свойства...
Гидрид свинца(IV) - PbH 4 - газообразное вещество без запаха, которое очень легко разлагается на свинец и водород. Получается в небольших количествах при реакции Mg 2 Pb и разбавленной HCl.

Применение:

Свинец хорошо экранирует радиацию и рентгеновские лучи, применяется в качестве защитного материала, в частности, в рентгеновских кабинетах, в лабораториях, где существует опасность облучения радиацией. Также используют для изготовления пластин аккумуляторов (около 30% выплавляемого свинца), оболочек электрических кабелей, защиты от гамма-излучения (стенки из свинцовых кирпичей), как компонент типографских и антифрикционных сплавов, полупроводниковых материалов.

Свинец и его соединения, особенно органические, токсичны. Попадая в клетки, свинец дезактивирует ферменты, тем самым нарушая обмен веществ, вызывая умственную отсталость у детей, заболевания мозга. Свинец может заменять кальций в костях, становясь постоянным источником отравления. ПДК в атмосферном воздухе соединений свинца 0,003 мг/м 3 , в воде 0,03 мг/л, почве 20,0мг/кг.

Барсукова М. Петрова М.
ХФ ТюмГУ, 571 группа.

Источники: Википедия: http://ru.wikipedia.org/wiki/Свинец и др.,
Н.А.Фигуровский "Открытие элементов и происхождение их названий". Москва, Наука, 1970. (на сайте ХФ МГУ http://www.chem.msu.su/rus/history/element/Pb.html)
Реми Г. "Курс неорганической химии", т.1. Изд-во иностранной литературы, Москва.
Лидин Р.А. "Химические свойства неорганических соединений". М.: Химия, 2000. 480 с.: ил.

ОПРЕДЕЛЕНИЕ

Свинец - восемьдесят второй элемент Периодической таблицы. Обозначение - Pb от латинского «plumbum». Расположен в шестом периоде, IVA группе. Относится к металлам. Заряд ядра равен 82.

Свинец - голубовато-белый тяжелый металл (рис. 1). В разрезе поверхность свинца блестит. На воздухе покрывается пленкой оксидов и из-за этого тускнеет. Он очень мягок и режется ножом. Обладает низкой теплопроводностью. Плотность 11,34 г/см 3 . Температура плавления 327,46 o С, кипения 1749 o С.

Рис. 1. Свинец. Внешний вид.

Атомная и молекулярная масса свинца

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии свинец существует в виде одноатомных молекул Pb, значения его атомной и молекулярной масс совпадают. Они равны 207,2.

Изотопы свинца

Известно, что в природе свинец может находиться в виде четырех стабильных изотопов 204 Pb, 206 Pb, 207 Pb и 208 Pb. Их массовые числа равны 204, 206, 207 и 208 соответственно. Ядро атома изотопа свинца 204 Pb содержит восемьдесят два протона и сто двадцать два нейтрона, а остальные отличаются от него только числом нейтронов.

Существуют искусственные нестабильные изотопы свинца с массовыми числами от 178-ми до 215-ти, а также более десяти изомерных состояний ядер, среди которых наиболее долгоживущими являются изотопы 202 Pb и 205 Pb, периоды полураспада которых равны 52,5 тысячи и 15,3 млн. лет соответственно.

Ионы свинца

На внешнем энергетическом уровне атома свинца имеется четыре электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5р 6 5d 10 6s 2 6р 2 .

В результате химического взаимодействия свинец отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Pb 0 -2e → Pb 2+ ;

Pb 0 -4e → Pb 4+ .

Молекула и атом свинца

В свободном состоянии свинец существует в виде одноатомных молекул Pb. Приведем некоторые свойства, характеризующие атом и молекулу свинца:

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание К раствору нитрата свинца (II) массой 80г (массовая доля соли 6,6%) прилили раствор йодида натрия массой 60 г (массовая доля NaI 5%). Рассчитайте массу йодида свинца (II), выпадающего в осадок.
Решение Запишем уравнение реакции взаимодействия нитрата свинца (II) с иодидом натрия:

Pb(NO 3) 2 + 2NaI = PbI 2 ↓ + 2NaNO 3 .

Найдем массы растворенных веществ нитрата свинца (II) и иодидом натрия:

ω = m solute / m solution × 100%;

m solute = ω /100%×m solution ;

m solute (Pb(NO 3) 2)=ω(Pb(NO 3) 2) /100%×m solution (Pb(NO 3) 2);

m solute (Pb(NO 3) 2) = 6,6 /100%× 80 = 5,28 г;

m solute (NaI) = ω (NaI) /100%×m solution (NaI);

m solute (NaI) =5 /100% × 60 = 3 г.

Найдем количество моль веществ, вступивших в реакцию (молярная масса нитрата свинца (II) равна 331 г/моль, иодида натрия - 150 г/моль) и определим, какое из них находится в избытке:

n(Pb(NO 3) 2) =m solute (Pb(NO 3) 2) / M (Pb(NO 3) 2);

n (Pb(NO 3) 2) = 5,28 / 331 = 0,016моль.

n(NaI) =m solute (NaI) / M (NaI);

n (NaI) = 3 / 150 = 0,02 моль.

Иодид натрия находится в избытке, следовательно, все дальнейшие расчеты ведем по нитрату свинца (II). n (Pb(NO 3) 2) : n (PbI 2) = 1:1, т.е. n (Pb(NO 3) 2) = n (PbI 2) = 0,016 моль. Тогда масса иодида свинца (II) будет равна (молярная масса - 461 г/моль):

m (PbI 2) = n (PbI 2) × M (PbI 2);

m (PbI 2) = 0,016 × 461 = 7,376 г.

Ответ Масса иодида свинца (II) равна 7,376 г.
Выбор редакции
Алкогольные коктейли, в том числе и «Ром Кола», являются в своем роде произведениями искусства. Их назначение заключается в формировании...

В этой статье о сливовом вине будет, пожалуй, больше теории, чем практики, но, во-первых, чтоб отлично проходили практические занятия по...

Печь хлеб, который олицетворяет в народном сознании самое насущное, означает укрепление благосостояния. Насколько человек разбогатеет,...

Иногда сны нас удивляют и даже шокируют. Например, к чему снятся роды – многим интересно, ведь такое бывает не каждый день! И одно дело,...
Самые ценные рецепты те, которые помогают варить консервацию очень быстро и в то же время получить вкусный продукт. Как раз с такого и...
Интересное сновидение, которое имеет довольно большое количество значений. Обычно рыжие волосы во сне олицетворяют стихию огня, буйный...
Частой закуской на праздничных и обыденных столах являются ароматные маринованные грибочки. Но что делать, если для сбора грибов нет...
Талисман Денежная Мельница относится к категории амулетов приносящих своему хозяину удачу в делах, и символики, для привлечения богатства...
Древние заклинания ведьм - опасная магия. Оригиналы таких текстов писались на латыни. Сегодня многие из них утрачены. Ниже ознакомитесь с...