Краткая история развития микробиологии: ученые, открытия, достижения. Роль микробиологии в жизни человека


  • 4. Классификация бактерий. Принципы современной систематики и номенклатуры, основные таксономические единицы. Понятие о виде, варианте, культуре, популяции, штамме.
  • 5. Методы микроскопии. Микроскопический метод диагностики инфекционных заболеваний.
  • 6. Методы окраски микробов и их отдельных структур.
  • 7. Морфология и химический состав бактерий. Протопласты. L – формы бактерий.
  • 8. Ультраструктура бактерий.
  • 9. Спорообразование у бактерий. Патогенные спорообразующие микробы.
  • 10. Капсулы у бактерий. Методы их обнаружения.
  • 11. Жгутики и включения у бактерий. Методы их обнаружения.
  • 14. Рост и размножение бактерий. Кинетика размножения бактериальной популяции.
  • 15. Морфология и ультраструктура риккетсий. Морфология и ультраструктура хламидий. Патогенные виды.
  • 16. Морфология и ультраструктура спирохет. Классификация, патогенные виды. Методы выделения.
  • 17. Морфология и ультраструктура микоплазм. Патогенные для человека виды.
  • 18. Систематика и номенклатура вирусов. Принципы современной классификации вирусов.
  • 19. Эволюция и происхождение вирусов. Основные отличия вирусов от бактерий.
  • 20. Морфология, ультраструктура и химический состав вирусов. Функции основных химических компонентов вируса.
  • 21. Репродукция вирусов. Основные фазы репродукции вирусов. Методы индикации вирусов в исследуемом материале.
  • 22. Вирусологический метод диагностики. Методы культивирования вирусов.
  • 23. Культуры клеток. Классификация клеточных культур. Питательные среды для культур клеток. Методы индикации вирусов в культуре клеток.
  • 24. Морфология, ультраструктура и химический состав фагов. Этапы репродукции фагов. Различия между вирулентными и умеренными фагами.
  • 25. Распространение фагов в природе. Методы обнаружения и получения фагов. Практическое использование фагов.
  • 26. Бактериологический метод диагностики инфекционных заболеваний.
  • 27. Питательные среды, их классификация. Требования, предъявляемые к питательным средам.
  • 28. Ферменты бактерий, их классификация. Принципы конструирования питательных сред для изучения ферментов бактерий.
  • 29. Основные принципы культивирования бактерий. Факторы, влияющие на рост и размножение бактерий. Культуральные свойства бактерий.
  • 30. Принципы и методы выделения чистых культур аэробных и анаэробных бактерий.
  • 31. Микрофлора почвы, воды, воздуха. Патогенные виды, сохраняющиеся во внешней среде и передающиеся через почву, воду, пищевые продукты, воздух.
  • 32. Санитарно – показательные микроорганизмы. Коли – титр, коли – индекс, методы определения.
  • 34. Взаимоотношения между микроорганизмами в ассоциациях. Микробы – антагонисты, их использование в производстве антибиотиков и других лечебных препаратов.
  • 35. Влияние на микробы физических, химических и биологических факторов.
  • 36. Стерилизация и дезинфекция. Методы стерилизации питательных сред и лабораторной посуды.
  • 38. Формы и механизмы наследственной изменчивости микроорганизмов. Мутации, репарации, их механизмы.
  • 43. Генетика вирусов. Внутривидовой и межвидовой обмен генетическим материалом.
  • 44. Основные группы антимикробных химиопрепаратов, применяемых в терапии и профилактики инфекционных болезней.
  • 45. Антибиотики. Классификация. Механизмы действия антибактериальных препаратов на микробы.
  • Общая микробиология

    1. Предмет, задачи, разделы микробиологии, ее связь с другими науками.

    Микробиология - наука о живых организмах, невидимых невооруженным глазом (микроорганизмах): бактерии, архебактерии, микроскопические грибы и водоросли, часто этот список продляют простейшими и вирусами. В область интересов микробиологии входит их систематика, морфология, физиология, биохимия, эволюция, роль в экосистемах, а также возможности практического использования.

    Предметом изучения микробиологии являются бактерии, плесневые грибы, дрожжи, актиномицеты, риккетсии, микоплазмы, вирусы. Но поскольку вирусы абсолютно не могут существовать без живого организма, изучением их занимается самостоятельная наука, называемая «вирусологией».

    Цель медицинской микробиологии - изучение структуры и свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней.

    Разделы микробиологии: бактериология, микология, вирусология и т. д.

      *Общая микробиология – изучает закономерности жизнедеятельности всех групп микроорганизмов, выясняет роль и значение в природном круговороте.

      *Частная микробиология – изучает систематику бактерий, возбудителей отдельных заболеваний и методы их лабораторной диагностики.

    В составе обширной науки микробиологии выделяют разделы:

      *Сельскохозяйственная микробиология изучает роль и формирование структуры почвы и ее плодородия, роль бактерий в питании растений. Разрабатывает методы и способы использования бактерий для удобрения почв и консервирования кормов.

      *Ветеринарная микробиология – изучает микробов, вызывающих заболевания у домашних животных, разрабатывает методы диагностики, профилактики и лечения данных болезней.

      *Техническая (промышленная) микробиология – изучает микроорганизмы, которые можно использовать в производственных процессах для получения биологически активных веществ, биомассы и пр. Многие исследования происходят на стыке дисциплин (например, молекулярная биология, генная инженерия, биотехнология).

      *Санитарная микробиология изучает бактерий, обитающих в объектах окружающей среды, как автохтонных, так и аллохтонных, способных вызвать загрязнение окружающей среды и играть определенную роль в эпидемиологии инфекций.

      *Экологическая микробиология изучает роль микроорганизмов в природных экосистемах и пищевых цепях.

      *Популяционная микробиология выясняет природу межклеточных контактов и взаимосвязь клеток в популяции.

      *Космическая микробиология характеризует физиологию земных микроорганизмов в условиях космоса, изучает влияние космоса на симбиотические бактерии человека, занимается вопросами предупреждения занесения космических микроорганизмов на Землю.

      *Медицинская микробиология – изучает микробов, вызывающих заболевания у человека. Изучает патогенез и клиническую картину заболеваний, факторы патогенности. Разрабатывает методы профилактики, диагностики и лечения инфекционных болезней человека.

    За время существования микробиологии сформировались общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная ветви.

    Общая изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т. д.

    Техническая занимается разработкой биотехнологии синтеза микроорганизмами биологически активных веществ: белков, нуклеиновых кислот, антибиотиков, спиртов, ферментов, а также редких неорганических соединений.

    Сельскохозяйственная исследует роль микроорганизмов в круговороте веществ, использует их для синтеза удобрений, борьбы с вредителями.

    Ветеринарная изучает возбудителей заболеваний животных, методы диагностики, специфической профилактики и этиотропного лечения, направленного на уничтожение возбудителя инфекции в организме больного животного.

    Медицинская микробиология изучает болезнетворные(патогенные) и условно-патогенные для человека микроорганизмы, а также разрабатывает методы микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.

    Санитарная микробиология изучает санитарно-микробиологическое состояние объектов окружающей среды, пищевых продуктов и напитков, и разрабатывает санитарно-микробиологические нормативы и методы индикации патогенных микроорганизмов в различных объектах и продуктах

    Микробиология (от греч. микрос – малый, биос – жизнь, логос – учение, наука) – это наука о микробах (микроорганизмах).

    Объект исследования : микробы или микроорганизмы (вирусы, бактерии, микроскопические водоросли и грибы, простейшие).

    Предмет исследования : морфология, физиология, биохимия, генетика, систематика, развитие, экология микроорганизмов, их значение в жизни человека, животных и всей биосферы.

    Микробиология подразделяется на дисциплины:

    1. Бактериологию – науку о бактериях;
    2. Вирусологию – о вирусах;
    3. Микологию – о грибах;
    4. Альгологию – о микроскопических водорослях;
    5. Протозоологию – о простейших;
    6. Иммунологию – о защитных реакциях организма.

    Разделы микробиологии:

    1. Общая – изучает наиболее общие закономерности, свойственные каждой группе микроорганизмов. Она является базовой для всех разделов микробиологии.
    2. Частная – частная микробиология изучает частные вопросы (характеристика возбудителей бактериальных, вирусных, протозойных инфекиций, микозов, микотоксикозов).

    Направления в микробиологии : с/х; медицинская; ветеринарная; техническая; санитарная; морская; геологическая; космическая.

    1. СЕЛЬСКОХОЗЯЙСТВЕННАЯ МИКРОБИОЛОГИЯ. Изучает микробы, которые участвуют в круговороте веществ, используются для изготовления удобрений, повышении плодородия почв, вызывают заболевания растений (фитопатогенные) и меры борьбы с ними и др.

    2. МЕДИЦИНСКАЯ МИКРОБИОЛОГИЯ. Предмет ее изучения – патогенные (болезнетворные) и условно-патогенные (вызывают болезни при определенных условиях) для человека микроорганизмы. Она изучает особенности возбудителя, методы лабораторной диагностики, лечения и профилактики болезней.

    3. ВЕТЕРИНАРНАЯ МИКРОБИОЛОГИЯ. Предмет ее изучения – также патогенные (болезнетворные) и условно-патогенные (вызывают болезни при определенных условиях) микроорганизмы. Она изучает возбудителей заболеваний с/х, промысловых и диких животных, птиц, рыб, пчел. Она изучает особенности возбудителя, методы лабораторной диагностики, лечения и профилактики болезней. Она тесно связана с медицинской, т. к. многие возбудители инфекционных болезней (зооантропонозы) являются общими для человека и животных. Также она изучает микрофлору продуктов животного происхождения (мяса, молока и др).

    4. ТЕХНИЧЕСКАЯ (ПРОМЫШЛЕННАЯ) МИКРОБИОЛОГИЯ. Ее задача – разработка биотехнологии синтеза микроорганизмами биологически активных веществ: белков, витаминов, ферментов, антибиотиков, спиртов, органических кислот, а также вина, пива, молочнокислых продуктов и др. В ее задачу входит также разработка методов борьбы с коррозией металлов и способов защиты от повреждения микробами строительных материалов, различного сырья, продуктов питания.

    5. САНИТАРНАЯ МИКРОБИОЛОГИЯ. Предмет ее изучения – санитарно–микробиологическое состояние объектов окружающей среды (воздух, вода, почва), пищевых и кормовых продуктов (мясо, молоко, яйца, зерно). Задача данного раздела – разработка санитарно-микробиологических нормативов и методов обнаружения патогенных и условно-патогенных микробов в различных объектах окружающей среды.

    6. МОРСКАЯ (ВОДНАЯ) МИКРОБИОЛОГИЯ. Она изучает микробов – обитателей морей, океанов и других водоемов. Разрабатывает микробиологические способы очистки промышленных и сточных вод.

    7. ГЕОЛОГИЧЕСКАЯ МИКРОБИОЛОГИЯ. Она исследует роль микроорганизмов в круговороте веществ, в образовании полезных ископаемых, разрабатывает микробиологические способы получения из руд металлов.

    8. КОСМИЧЕСКАЯ МИКРОБИОЛОГИЯ. Она изучает микрофлору космического пространства и других планет, влияние космических условий на жизнедеятельность микроорганизмов.

    Микробы (микроорганизмы) – это название собирательной группы живых организмов, не видимых невооруженным глазом (их характерный размер – менее 0,1 мм).

    К микробам относят: неклеточные формы (вирусы), прокариоты или безъядерные (бактерии), эукариоты или ядерные (грибы и простейшие).

    Свойства микроорганизмов :

    1. микроскопические размеры;
    2. относительная простота строения;
    3. высокие темпы размножения;
    4. массовость популяций;
    5. способность к трансформации любых органических и (или) неорганических веществ;
    6. высокая интенсивность обмена веществ;
    7. выраженная изменчивость и приспособляемость к внешней среде;
    8. повсеместное распространение в биосфере.

    Введение

    Микробиология (от греч. micros - малый, bios -жизнь, logos - учение) -наука, изучающая строение, жизнедеятельность и экологию микроорганизмов мельчайших форм жизни растительного или животного происхождения, не видимых невооруженным глазом.

    Микробиология изучает всех представителей микромира (бактерии, грибы, простейшие, вирусы). По своей сути микробиология является биологической фундаментальной наукой. Для изучения микроорганизмов она использует методы других наук, прежде всего физики, биологии, биоорганической химии, молекулярной биологии, генетики, цитологии, иммунологии. Как и всякая наука, микробиология подразделяется на общую и частную. Общая микробиология изучает закономерности строения и жизнедеятельности микроорганизмов на всех уровнях. молекулярном, клеточном, популяционном; генетику и взаимоотношения их с окружающей средой. Предметом изучения частной микробиологии являются отдельные представители микромира в зависимости от проявления и влияния их на окружающую среду, живую природу, в том числе человека. К частным разделам микробиологии относятся: медицинская, ветеринарная, сельскохозяйственная, техническая (раздел биотехнологии), морская, космическая микробиология.

    Медицинская микробиология изучает патогенные для человека микроорганизмы: бактерии, вирусы, грибы, простейшие. В зависимости от природы изучаемых патогенных микроорганизмов медицинская микробиология делится на бактериологию, вирусологию, микологию, протозоологию.

    Каждая из этих дисциплин рассматривает следующие вопросы:

    морфологию и физиологию, т.е. осуществляет микроскопические и другие виды исследований, изучает обмен веществ, питание, дыхание, условия роста и размножения, генетические особенности патогенных микроорганизмов;

    роль микроорганизмов в этиологии и патогенезе инфекционных болезней;

    основные клинические проявления и распространенность вызываемых заболеваний;

    специфическую диагностику, профилактику и лечение инфекционных болезней;

    экологию патогенных микроорганизмов.

    К медицинской микробиологии относят также санитарную, клиническую и фармацевтическую микробиологию.

    Санитарная микробиология изучает микрофлору окружающей среды, взаимоотношение микрофлоры с организмом, влияние микрофлоры и продуктов ее жизнедеятельности на состояние здоровья человека, разрабатывает мероприятия, предупреждающие неблагоприятное воздействие микроорганизмов на человека. В центре внимания клинической микробиологии. Роль условно-патогенных микроорганизмов в возникновении заболеваний человека, диагностика и профилактика этих болезней.

    Фармацевтическая микробиология исследует инфекционные болезни лекарственных растений, порчу лекарственных растений и сырья под действием микроорганизмов, обсемененность лекарственных средств в процессе приготовления, а также готовых лекарственных форм, методы асептики и антисептики, дезинфекции при производстве лекарственных препаратов, технологию получения микробиологических и иммунологических диагностических, профилактических и лечебных препаратов.

    Ветеринарная микробиология изучает те же вопросы, что и медицинская микробиология, но применительно к микроорганизмам, вызывающим болезни животных.

    Микрофлора почвы, растительного мира, влияние ее на плодородие, состав почвы, инфекционные заболевания растений и т.д. находятся в центре внимания сельскохозяйственной микробиологии.

    Морская и космическая микробиология изучает соответственно микрофлору морей и водоемов и космического пространства и других планет.

    Техническая микробиология, являющаяся частью биотехнологии, разрабатывает технологию получения из микроорганизмов разнообразных продуктов для народного хозяйства и медицины (антибиотики, вакцины, ферменты, белки, витамины). Основа современной биотехнологии - генетическая инженерия.

    История развития микробиологии

    Микробиология прошла длительный путь развития, исчисляющийся многими тысячелетиями. Уже в V.VI тысячелетии до н.э. человек пользовался плодами деятельности микроорганизмов, не зная об их существовании. Виноделие, хлебопечение, сыроделие, выделка кож. не что иное, как процессы, проходящие с участием микроорганизмов. Тогда же, в древности, ученые и мыслители предполагали, что многие болезни вызываются какими-то посторонними невидимыми причинами, имеющими живую природу.

    Следовательно, микробиология зародилась задолго до нашей эры. В своем развитии она прошла несколько этапов, не столько связанных хронологически, сколько обусловленных основными достижениями и открытиями.

    ЭВРИСТИЧЕСКИЙ ПЕРИОД (IV III вв. до н.э. XVI в.) Связан скорее с логическими и методическими приемами нахождения истины, то есть эвристикой, чем с какимилибо экспериментами и до казательствами. Мыслители этого периода (Гиппократ, римский писатель Варрон, Авиценна и др.) высказывали предположения о природе заразных болезней, миазмах, мелких невидимых животных. Эти представления были сформулированы в стройную гипотезу спустя многие столетия в сочинениях итальянского врача Д. Фракасторо (1478 1553 гг.), высказавшего идею о живом контагии (contagiumvivum), который вызывает болезни. При этом каждая болезнь вызывается своим контагием. Для предохранения от болезней им были рекомендованы изоляция больного, карантин, ноше ние масок, обработка предметов уксусом.

    МОРФОЛОГИЧЕСКИЙ ПЕРИОД (XVII ПЕРВАЯ ПОЛОВИНА XIX вв.) Начинается с открытия микроорганизмов А. Левенгуком. На этом этапе было подтверждено повсеместное распространение микроорганизмов, описаны формы клеток, характер движения, места обитания многих представителей микромира. Окончание этого периода знаменательно тем, что накопленные к этому времени знания о микроорганизмах и научно методический уровень (в частности, наличие микроскопической техники) позволили ученым разрешить три очень важные (основные) для всех естественных наук проблемы: изучение природы процессов брожения и гниения, причины возникновения инфекционных заболеваний, проблему само зарождения микроорганизмов.

    Изучение природы процессов брожения и гниения. Термин «брожение» (fermentatio) для обозначения всех процессов, идущих с выделени ем газа, впервые употребил голландский алхимик Я.Б. Гельмонт (1579-1644 гг.). Многие ученые пытались дать определение этому процессу и объяснить его. Но ближе всех к пониманию роли дрожжей в процессе брожения подошел французский химик А.Л. Лавуазье (1743 1794 гг.) при изучении количественных химических превращений сахара при спиртовом брожении, но он не успел завершить свою работу, так как стал жертвой террора французской буржуазной революции.

    Многие ученые изучали процесс брожения, но к заключению о связи процессов брожения с жизнедеятельностью микроскопических живых существ одновременно, независимо друг от друга пришли французский ботаник Ш. Каньяр де Латур (исследовал осадок при спиртовом брожении и обнаружил живых существ), немецкие естествоиспытатели Ф. Кютцинг (при образовании уксуса обратил внимание на слизистую пленку на поверхности, которая также состоя ла из живых организмов) и Т. Шванн. Но их исследования были подверг нуты суровой критике сторонниками теории физикохимической природы брожения. Их обвинили в «легкомыслии в выводах» и отсутствии доказательств. Вторая основная проблема о микробной природе инфекционных заболеваний также была решена в морфологический период развития микробиологии.

    Первыми высказали предположения о том, что заболевания вызывают невидимые существа, древнегреческий врач Гиппократ (ок. 460 377 гг. до н.э.), Авиценна (ок. 980 1037 гг.) и др. Несмотря на то, что появление болезней теперь уже связывалось с открытыми микроорганизмами, необходимы были прямые доказательства. И они были полу ченырусским врачом эпидемиологом Д.С. Самойловичем (1744 1805 гг.). Микроскопы того времени имели увеличение примерно в 300 раз и не позволяли обнаружить возбудителя чумы, для выявления которого, как сейчас известно, необходимо увеличение в 800 1000 раз. Чтобы доказать, что чума вызывается особым возбудителем, он заразил себя отделяемым бубона больного чумой человека и заболел чумой.

    К счастью, Д.С. Самойлович остался жив. Впоследствии героические опыты по само заражению для доказательства заразности того или иного микроорганизма провели русские врачи Г.Н. Минх и О.О. Мочутковский, И.И. Мечников и др. Но приоритет в решении вопроса о микробной природе инфекционных заболеваний принадлежит итальянскому естествоиспытателю А. Баси (1773 1856 гг.), который впервые экспериментально установил микробную природу заболевания шелковичных червей, он обнаружил передачу болезни при переносе микроскопического грибка от больной особи к здоровой. Но большинство исследователей были убеждены в том, что причинами всех заболеваний являются нарушения течения химических процессов в организме. Третья проблема о способе появления и размножения микроорганизмов была решена в споре с господствовавшей тогда теорией самозарождения.

    Несмотря на то, что итальянский ученый Л. Спалланцанив се редине XVIII в. наблюдал под микроскопом деление бактерий, мнение о том, что они самозарождаются (возникают из гнили, грязи и т.д.), не было опровергнуто. Это было сделано выдающимся французским ученым Луи Пастером (1822 1895 гг.), который своими работами положил начало со временной микробиологии. В этот же период начиналось развитие микробиологии в России. Основоположником русской микробиологии является Л.Н. Ценковский (1822 1887 гг.). Объекты его исследований простейшие, водоросли, грибы. Он открыл и описал большое число простейших, изучил их морфологию и циклы развития, показал, что нет резкой границы между миром растений и животных. Им была организована одна из первых пастеровских станций в России и предложена вакцина против сибирской язвы (живая вакцина Ценковского).

    ФИЗИОЛОГИЧЕСКИЙ ПЕРИОД (ВТОРАЯ ПОЛОВИНА XIX в.)

    Бурное развитие микробиологии в XIX в. привело к открытию многих микроорганизмов: клубеньковых бактерий, нитрифицирующих бактерий, возбудителей многих инфекционных болезней (сибирская язва, чума, столбняк, дифтерия, холера, туберкулез и др.), вируса табачной мозаики, вируса ящура и др. Открытие новых микроорганизмов сопровождалось изучением не только их строения, но и их жизнедеятельности, то есть на смену морфологосистематическому изучению первой половины XIX в. пришло физиологическое изучение микроорганизмов, основанное на точном эксперименте.

    Поэтому вторую половину XIX в. принято называть физиологическим периодом в развитии микробиологии. Этот период характеризуется выдающимися открытиями в области микробиологии, и его без преувеличения можно было бы назвать в честь гениального французского ученого Л. Пастера Пастеровским, потому что научная деятельность этого ученого охватывала все основные проблемы, связанные с жизнедеятельностью микроорганизмов. Подробнее об основ ных научных открытиях Л. Пастера и их значении для охраны здоровья людей и хозяйственной деятельности человека будет сказано в § 1.3. Первым из современников Л. Пастера, кто оценил значение его от крытий, был английский хирург Дж. Листер (1827 1912 гг.), который, ос новываясь на достижениях Л. Пастера, впервые ввел в медицинскую прак тику обработку всех хирургических инструментов карболовой кислотой, обеззараживание операционных и добился снижения числа смертельных исходов после операций.

    Одним из основоположников медицинской микробиологии является Роберт Кох (1843 1910 гг.), которому принадлежит разработка методов получения чистых культур бактерий, окра ска бактерий при микроскопии, микрофотографии. Известна также сформулированная Р. Кохом триада Коха, которой до сих пор пользуются при установлении возбудителя болезни. В 1877 г. Р. Кох выделил возбудителя сибирской язвы, в 1882 г. возбудителя туберкулеза, а в 1905 г. ему была присуждена Нобелевская премия за открытие возбудителя холеры. В физиологический период, а именно в 1867 г., М.С. Воронин описал клубеньковые бактерии, а почти через 20 лет Г. Гельригель и Г. Вильфарт показали их способность к азотфиксации. Французские химики Т. Шлезинг, А. Мюнц обосновали микробиологическую природу нитрификации (1877 г.), а в 1882 г. П. Дегерен установил природу денитрификации, природу анаэробного разложения растительных остатков.

    Российский ученый П.А. Костычев создал теорию микробиологической природы процессов почвообразования. Наконец, в 1892 г. русский ботаник Д. И. Ивановский (1864 1920 гг.) открыл вирус табачной мозаики. В 1898 г. независимо от Д.И. Ивановского этот же вирус был описан М. Бейеринком. Затем был открыт вирус ящура (Ф. Леффлер, П. Фрош, 1897 г.), желтой лихорадки (У. Рид, 1901 г.) и многие другие вирусы. Однако увидеть вирусные частицы стало возможным только после изобретения электронного микроскопа, так как в световые микроскопы они не видны. К настоящему времени царство вирусов насчитывает до 1000 болезнетворных видов. Только за последнее время открыт ряд новых Д. И. Ивановский вирусов, в том числе вирус, вызывающий СПИД.

    Несомненно, что период открытия новых вирусов и бактерий и изучения их морфологии и физиологии продолжается до настоящего времени. С.Н. Виноградский (1856 1953 гг.) и голландский микробиолог М. Бейеринк (1851 1931 гг.) ввели микроэкологический принцип исследования микроорганизмов. С.Н. Виноградский предложил создавать специфические (элективные) условия, дающие возможность преимуществен ного развития одной группы микроорганизмов, открыл в 1893 г. анаэроб ный азотфиксатор, названный им в честь Пастера Clostridiumpasterianum, выделил из почвы микроорганизмы, представляющие совершенно новый тип жизни и получившие название хемолитоавтотрофных.

    Микроэкологический принцип был развит и М. Бейеринком и применен при выделении различных групп микроорганизмов. Через 8 лет после открытия С.Н. Виноградским азотфиксатора М. Бейеринк выделил в аэробных условиях Azotobacterchroococcum, исследовал физиологию клубеньковых бактерий, процессы денитрификации и сульфатредукции и т.д. Оба этих исследователя являются основоположниками экологического на правления микробиологии, связанного с изучением роли микроорганизмов в круговороте веществ в природе. К концу XIX в. намечается дифференциация микробиологии на ряд частных направлений: общая, медицинская, почвенная.

    ИММУНОЛОГИЧЕСКИЙ ПЕРИОД (НАЧАЛО ХХ в.) С наступлением ХХ в. начинается новый период в микробиологии, к которому привели открытия XIX в. Работы Л. Пастера по вакцинации, И.И. Мечникова по фагоцитозу, П.Эрлиха по теории гуморального иммунитета составили основное содержание этого этапа в развитии микробиологии, по праву получившего название иммунологического.

    И.И. Мечников того, как стала широко применяться вакцинация против многих заболеваний. И.И. Мечников показал, что защита организма от болезнетворных бактерий это сложная биологическая реакция, в основе которой лежит способность фагоцитов (макро и микрофаги) захватывать и разрушать посторонние тела, попавшие в организм, в том числе бактерии. Ис следования И.И. Мечникова по фагоцитозу убедительно доказали, что, по мимо гуморального, существует клеточный иммунитет. И.И. Мечников и П. Эрлих были научными противниками на протяжении многих лет, каждый экспериментально доказывал справедливость своей теории.

    Впоследствии оказалось, что противоречия между гуморальным и фагоцитарным иммунитетами нет, так как эти механизмы осуществляют защиту организма совместно. И в 1908 г. И.И. Мечникову совместно с П. Эрлихом была присуждена Нобелевская премия за разработку теории иммунитета. Иммунологический период характеризуется открытием основных ре акций иммунной системы на генетически чужеродные вещества (антигены): антителообразование и фагоцитоз, гиперчувствительность замедленного типа (ГЗТ), гиперчувствительность немедленного типа (ГНТ), толерантность, иммунологическая память.

    Особенно бурное развитие получили микробиология и иммунология в 50 60 гг. двадцатого столетия. Этому способствовали важнейшие открытия в области молекулярной биологии, генетики, биоорганической химии; появление новых наук: генетической инженерии, молекулярной биологии, биотехнологии, информатики; создание новых методов и использование научной аппаратуры. Иммунология является основой для разработки лабораторных методов диагностики, профилактики и лечения инфекционных и многих неинфекционных болезней, а также разработки иммунобиологических препаратов (вакцин, иммуноглобулинов, иммуномодуляторов, аллергенов, диагностических препаратов). Разработкой и производством иммунобиологических препаратов занимается иммунобиотехнология самостоятельный раз дел иммунологии.

    Современная медицинская микробиология и иммунология достигли больших успехов и играют огромную роль в диагностике, профилактике и лечении инфекционных и многих неинфекционных болезней, связанных с нарушением иммунной системы (онкологические, аутоиммунные болезни, трансплантация органов и тканей и др.).

    Например, химический синтез лизоцима (Д. Села, 1971 г.), пептидов вируса СПИДа (Р.В. Петров, В.Т. Иванов и др.). 3. Расшифровка строения антителиммуноглобулинов (Д. Эдельман, Р. Портер, 1959 г.). 4. Разработка метода культур животных и растительных клеток и их выращивание в промышленных масштабах с целью получения вирусных антигенов. 5. Получение рекомбинантных бактерий и рекомбинантных вирусов. 6. Создание гибридом путем слияния иммунных В лимфоцитов продуцентов антител и раковых клеток с целью получения моноклональных антител (Д. Келлер, Ц. Мильштейн, 1975 г.). 7. Открытие иммуномодуляторов иммуноцитокининов (интерлейкины, интерфероны, миелопептиды и др.) эндогенных природных регуляторов иммунной системы и их использование для профилактики и лечения различных болезней. 8. Получение вакцин с помощью методов биотехнологии и приемов генетической инженерии (гепатита В, малярии, антигенов ВИЧ и других антигенов) и биологически активных пептидов (интерфероны, интерлейкины, ростовые факторы и др.). 9. Разработка синтетических вакцин на основе природных или синтетических антигенов и их фрагментов. 10. Открытие вирусов, вызывающих иммунодефициты. 11. Разработка принципиально новых способов диагностики инфекционных и неинфекционных болезней (иммуноферментный, радиоиммунный анализы, иммуноблотинг, гибридизация нуклеиновых кислот).

    Создание на основе этих способов тестсистем для индикации, идентификации микроорганизмов, диагностики инфекционных и неинфекционных болез ней. Во второй половине ХХ в. продолжается формирование новых на правлений в микробиологии, от нее отпочковываются новые дисциплины со своими объектами исследований (вирусология, микология), выделяются направления, различающиеся задачами исследования (общая микробиология, техническая, сельскохозяйственная, медицинская микробиология, генетика микроорганизмов и т.д.). Было изучено много форм микроорганизмов и примерно к середине 50х гг. прошлого века А. Клюйвером (1888 1956 гг.) и К. Нилем (1897 1985 гг.) была сформулирована теория биохимического единства жизни

    Реакция Вассермана (RW или ЭДС-Экспресс Диагностика Сифилиса) - устаревший метод диагностики сифилиса при помощи серологической реакции. В настоящее время заменён микрореакцией преципитации (антикардиолипиновый тест , MP , RPR - RapidPlasmaReagin). Названа по имени немецкого иммунолога Августа Вассермана <#"justify">Это реакция агглютинации применяемая для диагностики брюшного тифа и некоторых тифо-паратифозных заболеваний.

    Предложена в 1896 французским врачом Ф. Видалем (F. Widal, 1862-1929). В. р. основана на способности антител (агглютининов), образующихся в организме в течение болезни и длительно сохраняющихся после выздоровления, вызывать склеивание брюшнотифозных микроорганизмов, специфические антитела (агглютинины) обнаруживаются в крови больного со 2-ой недели болезни.

    Для постановки реакции Видаля берут шприцем кровь из локтевой вены в количестве 2-3 мл и дают ей свернуться. Образовавшийся сгусток отделяют, а сыворотку отсасывают в чистую пробирку и готовят из неё 3 ряда разведений сыворотки больного от 1:100 до 1:800 следующим образом: во все пробирки разливают по 1 мл (20 капель) физиологического раствора; затем этой же пипеткой наливают 1 мл сыворотки, разведенной 1:50 в первую пробирку, перемешивают с физиологическим раствором, таким образом получают разведение 1:100, Из этой пробирки переносят 1 мл сыворотки в следующую пробирку, перемешивают с физиологическим раствором, получают разведение 1:200 также получают разведения 1:400 и 1:800 в каждом из трёх рядов.

    Реакция агглютинации Видзля ведётся в объеме 1 мл жидкости, поэтому из последней пробирки после смешения жидкости удаляют 1 мл. В отдельную контрольную пробирку наливают 1 мл физиологического раствора без сыворотки. Этот контроль ставится для проверки возможности спонтанной агглютинации антигена (диагностикума) а каждом ряду {контроль антигена). Во все пробирки каждого ряда, соответствующего надписям, закапывают по 2 капли диагностикума. Штатив ставят в термостат на 2 часа при 37 «С и затем на сутки оставляют при комнатной температуре. Учёт реакции производится на следующем занятии.

    В сыворотках больных могут быть как специфические, так и групповые антитела, которые различаются по высоте титра. Специфическая реакция агглютинации идёт обычно до более высокого титра. Реакция считается положительной, если агглютинация произошла хотя бы в первой пробирке с разведением 1:200. Обычно она наступает в больших разведениях. Если наблюдается групповая агглютинация с двумя или тремя антигенами, то возбудителем болезни считают того микроба, с которым произошла агглютинация в наиболее высоком разведении сыворотки.

    Если при добавлении к сыворотке крови человека культуры возбудителя происходит агглютинация, реакция считается положительной. Для диагностики брюшного тифа реакцию Видаля ставят многократно, учитывая её показания в динамике и в связи с Анамнез <#"justify">Заключение

    За время своего развития микробиология не только много почерпнула из смежных наук (например, иммунологии, биохимии, биофизики и генетики), но и сама дала мощный импульс для их дальнейшего развития. Микробиология изучает морфологию, физиологию, генетику, систематику, экологию и взаимоотношения микроорганизмов с другими существами. Поскольку микроорганизмы очень многообразны, то более детальным их изучением занимаются специальные её направления: вирусология, бактериология, микология, протозоология и др. Обилие фактического материала, накопленного за относительно короткий период научного развития микробиологии (со второй половины XIX в.), способствовало разделению микробиологии на ряд специализированных направлений: медицинское, ветеринарное, техническое, космическое и т.д.

    Медицинская микробиология изучает микроорганизмы, патогенные и условно-патогенные для человека, их экологию и распространённость, методы их выделения и идентификации, а также вопросы эпидемиологии, специфической терапии и профилактики вызываемых ими заболеваний.

    Актуальной проблемой медицинской микробиологии до настоящего времени остаётся исследование всего комплекса взаимодействий внутри экосистемы «микроорганизм-микроорганизм», будь это микроб-комменсал или микроб-патоген.

    Список литературы

    1. Покровский В.И. «Медицинская микробиология, иммунология, вирусология». Учебник для студентов фарм. ВУЗов, 2002.

    Борисов Л.Б. «Медицинская микробиология, вирусология и иммунология». Учебник для студентов мед. ВУЗов, 1994.

    Воробьев А.А. «Микробиология». Учебник для студентов мед. ВУЗов, 1994.

    Коротяев А.И. «Медицинская микробиология, вирусология и иммунология», 1998.

    Букринская А.Г. «Вирусология», 1986.

    Л. Б. Борисов. Медицинская микробиология, вирусология, иммунология. М.: ООО «МИА», 2010. 736 с.

    Поздеев О. К. Медицинская микробиология. М.: ГЭОТАР-МЕД, 2001. 754 с.

    Классификация живого мира по Виттекеру.

    Plentae(растения)Fundi(грибы) Animalia (животные)

    Protista (одноклеточные)

    Monera (бактерии)

    Определение- Микробиология наука о животных организмах имеющих малые размеры и невидимых невооруженным глазом.

    Микроорганизмы не представляют собой единой систематической группы. К ним относятся одноклеточные и многоклеточные организмы растительного и животного происхождения, а также особая группа прокарестических организмов-бактерий и бактериофаги, вирусы.

    Размеры микроорганизмов.

    Группа микроорганизмов

    Размер микроорганизмов

    Наука изучающая данную группу

    Вирусология

    Бактерии

    Бактериология

    Цианобактерии

    Альгология

    Микроскопические водоросли

    Микроскопические животные

    Протозоология

    Микроскопические грибы

    Микология(Фунгология)

    История микробиологии.

    Человек в своей практической деятельности встречался с микроорганизмами с древнейших времен: хлебопечение; виноделие; пивоварение; инфекционные заболевания.

    Причины инфекционных заболеваний выяснялись начиная с древней Греции.

    Гиппократ IVвек до н.э. (тиазмы в воздухе)

    Фракастора Vвек до н.э. (учение о контагее)

    Микроорганизмы впервые увидел Антонио Ван Левенгук 17век (1632-1723)

    Vivaanimalika– маленькие зверушки.

    В середине 19 века Геккель изучая более внимательно строение бактериальных клеток обнаружил, что оно отличаться от строения клеток растений и животных. Он назвал эту группу прокариоты (клетки не имеющие настоящего ядра), а остальные растения, животные и грибы которые в клетке имеют ядро отошли в группу эукариоты.

    Начинается II период развития микробиологии пастеровский или физиологический.

    Работы Пастера. (1822-1895)

    Пастер поставил развитие микробиологии на новый путь. По воззрениям того времени брожение считалось чисто химическим процессом

      Пастер в своих работах показал, что каждый вид брожения вызывается свими специфическими возбудителями – микроорганизмами.

      Изучая масляно-кислое брожение Пастер установил, что для бактерий вызывающих это брожение воздух вреден и открыл новый тип жизни анаэробиоз.

      Пастер доказал невозможность самозарождения жизни.

      Пастер изучал инфекционные заболевания (сибирскую язву) и предложил метод предохранительных прививок как способ борьбы с инфекциями. Пастер сделал первый шаг и зарождению новой науки – иммунология. В 1888г. В Париже на средства собранные по подписке был построен институт микробиологии.

      Пастеризация.

    Роберт Кох (1843-1910)

      Окончательно доказал, что заразные болезни вызываются болезнетворными бактериями. Указал приемы борьбы с распространением инфекционных заболеваний – ДЕЗИНФЕКЦИЯ.

      Ввел в практику микробиологических исследованный использование твердых патотельных сред для получения чистых культур.

      Открыл возбудителей сибирской язвы (1877г.), туберкулеза (1882г.), холеры(1883г.).

    Русская микробиология.

    Н. Н. Мечников (1845-1916)

    Продолжил работы Пастера по предохранительным прививкам и обнаружил, что в ответ на введения в кровь ослабленного возбудителя болезни в крови появляется большое количество особых иммунных тел –фагоцитов, и т.о. обосновал теорию иммунитета.

    В 1909г. Получил за эту теорию Нобелевскую премию.

    С. Н. Виноградский (1856-1953)

    Следовал серобактерии, железобактерии, нитрифицирующие бактерии. Изучал почвенные бактерии. Открыл явление азотофикации. Открыл процесс хемосинтеза.

    Хемосинтез исп. химических связей внутри молекул, как источник энергии для настроения новых молекул.

    В. Л. Омелонский (1867-1928)

    Написал первый учебник по микробиологии.

    Методы микробиологических исследований.

      Бактериоскопический –это изучение внешней формы микроорганизмов с помощью увеличительных приборов.

      Бактериологический – это метод выращивания бактерий искусственных питательных средах. С помощью этого метода изучаеться форма бактериальных колоний, период роста, и др. характеристики роста бактериальных культур.

      Общебиологические :

      Методы молекулярной биологии,

      Цитохимии

      Генетики

      Биофизики

    Химический состав и строение бактериальной клетки.

      Поверхностные клеточные структуры и внеклеточные образования: 1- клеточная стенка; 2-капсула; 3-слизистые выделения; 4-чехол; 5-жгутики; 6-ворсинки.

      Цитоплазматические клеточные структуры: 7-ЦМП; 8-нуклеотид; 9-рибосомы; 10-цитоплазма; 11-хроматофоры; 12-хлоросомы; 13-пластинчатые тилакоиды; 16-мезасома; 17-аэросомы (газовые вакуоли) ; 18-ламелярные структуры;

      Запасные вещества: 19-полисахарные гранулы; 20-гранулы поли-β-оксимасляной кислоты; 21-гранулы полифосфата; 22-цианофициновые гранулы; 23-карбоксисомы (полиэдральные тела); 24-вкючения серы; 25-жировые капли; 26-углеводородные гранулы.

    Ультраструктура бактериальной клетки.

    Разные методы исследования позволили выявить различия внутренней и внешней структуры у бактерий.

    Поверхностная структура это:

    • Ворсинки

      Клеточная стенка

    Внутренние структуры:

      Цитоплазматическая мембрана (ЦПМ)

      Нуклеоид

      Рибосомы

      Мезосомы

      Включения

    Функции органеллы.

    Клеточная стенка – обязательная структура для прокариотов за исключением микоплазмы и L-формы. На долю клеточной стенки приходится от 5 до 50% сухого вещества клетки.

    Клеточная стенка имеет поры и пронизана сетью каналов и разрывов.

    Функции

      Поддержание постоянной внешней формы бактерий.

      Механическая защита клетки

      Дают возможности существовать в гипотонических растворах.

    Слизистая капсула (слизистый чехол)

    Капсула и слизистый чехол покрывают клетку снаружи. Капсулой называется слизистое образование покрывающее клеточную стенку, имеющеечетко очерченную поверхность.

    Различают:

      Микрокапсулу (меньше 0,2 мкм)

      Микрокапсулу (больше 0,2 мкм)

    Наличие капсулы зависит от вида микроорганизмов и условий культивирования.

    Различают капсульные колонии:

      S-типа (гладкие, ровные, блестящие)

      R-типа (шероховатые)

    Функции:

      Защищает клетку от механических повреждений

      Защищает от высыхания

      Создает дополнительный осмотический барьер

      Служит препятствием для проникновения вирусом

      Является источником запасных питательных веществ

      Может быть приспособлением к окружающей среде

    Под слизистым чехлом понимают аморфное бесструктурное слизистое вещество окружающее клеточную стенку и легко отделяющееся от неё.

    Иногда ослизнение происходит у нескольких клеток так, что образуется общий чехол (зоология)

    Функции:

    Те же, что у капсулы.

    Ворсинки представляют собой тонкие полые образования белковой природы (длина от 0,3-10 мкм, толщина 10 нм). Ворсинки подобно жгутикам являеться поверхностными придатками бактериальной клетки, но не выполняют локомоторную реакцию.

    Жгутики

    Функция

    Локомоторная

    ЦПМ – обязательный структурный элемент клетки. На долю ЦПМ приходиться 8-15% сухого вещества клетки из них 50-70% - белки 15-30% - липиды. Толщина ЦПМ 70-100Å (10⁻¹⁰).

    Функции:

      Перенос веществ – через мембраны,

      Активный (против градиента концентрации, осуществляется белками – ферментами с затратой энергии)

      Пассивный (по градиенту концентрации)

      Локализуется большинство ферментативных систем клетки

      Имеет специальные участки для прикрепления ДНК прекариотной клетки и именно рост мембраны обеспечивает разделение геномов при делении клетки.

    Нуклеоид . Вопрос о наличии ядра у бактерий в течении десятилетий носил дискуссионный характер.

    При помощи электронной микроскопии ультратонких срезов бактериальных клеток, усовершенствованных цитохимических методах, радиографических и генетических исследований доказано наличие у бактерий нуклеодида – эквивалента ядра в клетке эукариотов.

    Нуклеоид :

      Не имеет мембраны,

      Не содержит хромасом

      Не делиться митозом.

    Один нуклеоид представляет собой макромолекулу ДНК с молекулярным весом 2-3*10⁹, размером 25-30 Å.

    В развернутом состоянии это замкнутая кольцевая структура длинной примерно 1мнм.

    В молекуле ДНК нуклеоида закодирована вся генетическая информация клетки и т.о. она является своеобразной кольцевой хромасомой.

    Количество нуклеоидов в клетке – 1, реже от 1 до 8.

    Рибосомы – это нуклеоидные частицы размером в 200-300Å. Ответственны за синтез белка. Находятся в цитоплазме прокариотов в количестве 5-50 тысяч.

    Хроматофоры – это складки цитоплазматической мембраны в виде капель, которые содержат окислительно-восстановительные ферменты. У фотосинтетиков – ферменты осуществляют синтез веществ за счет энергии солнца, у хемосинтетиков- за счет разрушенных химических связей молекулы.

    Тилокоиды так же содержат набор окислительно-восстановительных ферментов. Они есть и у фотосинтеиков и у хемосинтетиков. Очевидно прообраз митохондрий.

      Пластинчатые

      Трубчатые

    Функции

      Окисление веществ.

    Аэросомы - структуры, которые содержат какой-либо газ.

    Внутрицитоплазмотические включения

    В процессе жизнедеятельности бактериологической клетки в её цитоплазме могут формироваться морфологические образования, выявляемые цитохимическими методами. Эти образования названные включениями по своей химической природе различны и не одинаковы у разных бактерий. В одних случаях включения являются продуктами обмена бактериальной клетки, а в других запасным питательным питательным веществом.

    Химический состав клеток прокариотов.

    В состав любой клетки прокариотов входят:

      2 типа нуклеиновых кислот (ДНК и РНК)

    • Углеводы

      Минеральные вещества

    Вода

    В количественном отношении самый значительный компонент клеток микроорганизмов, количество её составляет 75-85%. Количество воды зависит от вида микроорганизмов, условий роста, физиологического состояния клетки.

    Вода в клетках бывает в 3-х состояниях:

      Свободном

      Связанном

      Связанном с боиполимерами

    Роль воды. Универсальный растворитель- необходимый для растворения многих химических растворений и осуществления реакций промежуточного метаболизма (гидролиз).

    Минеральные вещества

      Биогены (углерод(50%), водород,кислород,азот(14%),фосфор(1%),сера)

      Макроэлементы (0,01-3% от сухой массы клетки) K, Na, Mg, Ca, Cl, Fe.

      Микроэлементы (0,001-0,01% от сухой массы клетки) Mg, Zn,Mo,B,Cr,Co,Cu, и др.

      Ультрамикроэлементы (<0,001%) вся остальная таблица Менделеева.

    Соотношение отдельных химических элементов может колебаться в значительных пределах, в зависимости от систематического положения микроорганизмов, условий роста и ряда других причин.

    Количество минеральных веществ составляет 2-14% от сухой массы клетки, после биогенов.

    Роль минеральных веществ :

      Являются активаторами и ингибиторами ферментативных систем.

    Биополимеры.

    Основные химические элементы входят в состав биополимеров присущих всем живым организмам:

      Нуклеиновых кислот

    • Углеводов (полисахаридов)

    Характерным только для клеток – прокариот являются биополимер составляющий основу их клеточной стенки (по химическому составу это гликопептид или пептидогликан).

    Нуклиновые кислоты .

    В клетках в среднем содержится 10% РНК и 3-4% ДНК.

    Белки.

    Важнейшее значение в структуре и функции клеток принадлежит белкам, на долю которых приходиться 50-75% от сухой массы клетки.

    Значит долю белков микроорганизмов составляют ферменты играющие существенную роль в проявлении жизнедеятельности прокариот. К биологически активным белкам принадлежат белки участвующие в транспорте питательных веществ а также многие токсины.

    Часть белков составляют белки выполняющие структурную функцию – белки ЦПМ, клеточной стенки и др. органелл клетки.

    Лепиды

    В состав лепитов прокариот входят жирные кислоты, нейтральные жиры, фосфолепиды, гликолепиды, воска, лепиды содержащие изопреновые единицы (каротеноиды, бактопренол).

    Микоплазмы в отличие от всех других прокариот содержат холестерин. Большая часть лепидов входит в состав мембраны клетки и клеточной стенки.

    Углеводы

    Из них состоят многие структурные компоненты клетки. Они используются в качестве доступных источников энергии и углерода. В клетках содержаться как моносахариды, так и полисахариды.

    Морфология бактерий.

    По внешнему виду бактерии делятся на 3 группы:

      Кокковидной формы

      Палочковидной формы

      Извитые (или спиралевидные)

    Шаровидные бактерии – (кокки).

    Могут быть самостоятельными клетками – монококки °₀° или связанными попарно – диплококки или связанными в цепочку – стрептококки или в пакете – сарцины

    или в виде виноградной кисти – стафилококки

    Бактерии шаровидной формы называемые кокками имеют правильную сферическую форму или форму неправильного шара.

    Средний диаметр кокков – 0,5-1,5 мкм, у пневмококков например –

    По признаку расположения клеток по отношению друг к другу кокки делят на:

      Монококки

      Диплококки

      Стрептококки

    • Стафилококки

    Палочковидные бактерии (цилиндрические)

    Различаются по форме величине в длину и в поперечнике, в форме концов клетки а так же взаимному расположению.

    Размеры в поперечнике 0,5-1 мкм, длинна 2-3мкм.

    Большинство палочковидных бактерий имеют форму прямого цилиндра. Некоторые бактерии могут иметь либо прямую либо слегка изогнутую форму.

    Изогнутая форма встречается у вибрионов к которым относится возбудитель холеры.

    У отдельных бактерий встречаются нитевидные и ветвящиеся формы.

    Палочковидные микроорганизмы могут образовывать споры.

    Спорообразующие формы называются бациллы.

    Неспорообразующие называються бактериями.

    Булавовидные.

    Клострициальные.

    В зависимости от взаимного расположения делят:

      Монобациллы

      Диплобациллы

      Стептобациллы

    Спиралевидные бактерии

    Бактерии имеющие изгибы, равные одному или нескольким оборотам спирали.

    В зависимости от количества витков делят на группы:

      Вибрионы

      Спироллы 4-6 витков

      Спирохеты 6-15 витков

    Чаще всего это болезнетворные микроорганизмы.

    Существуют еще редко встречающиеся бактерии.

    Шаровидная, палочковидная и спиралевидная форм бактерий самые распространенные, но встречатся и другие формы:

      Имеют вид кольца (замкнутого или разомкнутого в зависимости от стадии роста). Такие клетки предложено называть тороидами.

      У некоторых бактерий описано образование клеточных выростов, число которых может колебаться от 1 до 8и более.

      Существуют так же бактерии напоминающие по виду правильную шестиугольную звезду.

      Для некоторых групп прокариотов характерно ветвление.

      В 1980 году английский микробиолог Уолсби сообщил что микроорганизмы могут быть квадратными.

    Форма бактерий наследственно закреплена (за исключением мипопиазм и L- форм), и по этому является одним из критериев при определении микроорганизмов.

    Движение бактерий.

    Способность активно передвигаться присуща многим бактериям. Существуют 2 типа подвижных бактерий:

      Скользящие

      Плавающее

      Скольжение. Микроорганизмы передвигаются по твердому и полу твердому субстрату (почва, ил, камни). В результате волнообразных сокращений вызывающих периферическое изменение формы тела. Образуется некоторое подобие бегущей волны: выпуклости клеточной стенки, которая перемещаясь в одном направлении способствует движению в противоположную сторону.

      Плавание. Палочковидные бактерии относятся к плавающим формам, а так же большинство спирилл и некоторые кокки.

    Все эти бактерии передвигаются с помощью особых поверхностных нитевидных образований, называемых жгутиками. Различают несколько типов жгутикования в зависимости от того как они расположены на поверхности и сколько их:

      Монотрих

      Биполярный монотрих или амфитрих

      Лофотрих

      Амфитрих или биполярный лофотриф

      Перетрих

    Толщина жгутиков 0,01-0,03 мкм. Длинна меняется у одной и той же клетки в зависимости от условий окружающей среды от 3-12 мкм.

    Число жгутиков различно у разных видов бактерий, у некоторых перитрихов она достигает 100.

    Жгутики не являются жизненно важными органами.

    Жгутики как бы присутствуют на определенных стадиях развития клетки.

    Скорость передвижения бактерий при помощи жгутиков различается у разных видов. Большинство бактерий проходит за секунду расстояние равное длине своего тела. Некоторые бактерии при благоприятных условиях могут проходить расстояния превышающие 50 длин тела.

    В перемещениях бактерий есть определенный смысл, они стремятся в сторону наиболее благоприятных условий существования. Они называются таисисами.

    Таксисы могут быть хема, фото, аэро,

    Если в сторону благоприятных факторов то это положительно таксис , если от факторов, то отрицательно таксис.

    Споры и спорообразование.

    Многие бактерии способны образовывать структуры помогающие им переживать в течение длительного времени не благоприятные условия и переходить в активное состояние при попадание в подходящие для этого условия. Эти формы называются цистами эндоспорами.

    Микроцисты:

    При их образовании происходит утолщение стенки вегетативной клетки, в результате чего формируются оптически плотные, яркопреломляющие свет, окруженные слизью, укороченные палочки или сферические формы.

    Они функционально аналогичны бактериальным эндоспорам:

      Более устойчивы к изменению температур

      Высушиванию

      Различным физическим воздействиям, чем вегетативная клетка.

    Эндоспоры:

    Образуются эндоспоры у следующих бактерий:

    • Desulfotomaculum

    Формирование споры начинается с того что в зоне локализации нитей ДНК происходит уплотнение цитоплазмы, которая вместе с генетическим материалом обособляется от остального клеточного содержимого с помощью перегородки. Образуются плотные мембранные слои между которыми начинается формирование кортикального слоя (кортекс).

    Спора- это покоящаяся стадия спорообразующих видов бактерий.

    Бактерии образуют споры, когда создаются такие условия в окружающей среде которые индуцируют процесс спорообразования.

    Считается что споры не обязательная стадия цикла развития споро образующих бактерий.

    Можно создать условия в которых рост и размножение бактериальных клеток происходит без спорообразования в течении многих поколений.

    Факторы и индуцирующие споро образование:

      Недостаток питательных веществ в среде

      Изменение pH

      Изменение температуры

      Накопление выше определенного уровня продуктов клеточного метаболизма.

    Принципы систематики микроорганизмов.

    Понятие вид, штамм, клон.

    Основная таксономическая единица –вид который следует рассматривать как конкретную форму существования органического мира.

    В микробиологии понятие вид можно определить как совокупность микроорганизмов имеющих единое происхождение и генотип, сходных по своим биологическим признакам и обладающих наследственно закрепленной способностью вызывать в стандартных условиях качественно-определенные процессы.

    Сравнительно однородные виды бактерий определяют в роды → семейства → порядки → классы.

    Важным критерием определения понятия вид является однородность особей.

    Для микроорганизмов строгая однородность признаков не является характерными, поскольку их морфологические свойства могут изменяться в зависимости от условий окружающей с среды в течение короткого времени.

    Название микроорганизма состоит из двух слов: первое слово означает род (оно пишется с большой буквы и является производной от какого либо термина характеризующего признак, или от фамилии автора открывшего или изучившего этот микроорганизм), второе слово обозначает конкретный вид (пишется с маленькой буквы и является производным существительного определяющего источник происхождения микроба, либо название вызываемого им заболевания, либо фамилия автора). Bacillusanthracis.

    В микробиологии широко применяются термины штамм иклон.

    Штамм более узкое понятие чем вид.

    Штаммами называются различные микробные культуры одного вида, выделенные из различных источников или из одного источника, но в разное время.

    Штаммы одного вида могут быть совершенно идентичными или различаться по отдельным признакам (например по устойчивости к какому – либо антибиотику, ферментации какого-либо сахара и т.д.).

    Однако свойства различных штаммов не выходят за пределы вида.

    Термином клон обозначают культуру микроорганизмов полученную из одной клетки.

    Популяции микробов состоящие из особей одного вида называются чистой культурой.

    Понятие о статических и проточных микробных культурах.

    Хемостат

    Турбиностат – определение мертвых микроорганизмов по мутности.

    Таких емкостях выращивается проточная микробная культура.

    Для выращивания проточной микробной культуры, выращенной в условиях постоянной подпитки и удаления продуктов метаболизма и мертвых микробных клеток.

    Статичная микробная культура – это популяция бактерий находящихся в ограниченном жизненном пространстве, которое не обменивается ни веществом ни энергией с окружающей средой.

    Закономерности роста и развития микроорганизмов.

    Изменение и обновление организма в процессе его обмена с окружающей средой называется развитием. Развитие организма имеет 2 следствия:

      Размножение.

    Под ростом подразумевается увеличение размеров организма или его живого веса.

    Под размножением подразумевается увеличение количества организмов.

    Скорости роста микробной популяции:

    Абсолютная скорость.

    Относительная скорость по биомассе.

    Понятие генерации:

    Фазы развития стационарной микробной культуры.

      Фаза – лаг-фоза.

    Период от внесения бактерий до достижения ими максимальной относительной скорости роста. В этот период бактерии приспосабливаются к новой среде обитания и поэтому размножаются не значительно. К концу лаг-фазы клетки часто увеличивают свой оббьем и т.к. их количество в этот момент не велико, то относительная скорость роста биомассы становиться максимальной, по окончании этого периода, в то время как абсолютная скорость лишь незначительно увеличиваться. Длительность лаг-фазы зависит как от внешних условий так и от возраста бактерий и их видовой специфичности. Как правило чем полноценней среда, тем короче лаг-фаза. Изменение в химическом составе бактериальной клетки выражается в накоплении запасных питательных веществ и в резком повышении содержания РНК (в 8-12 раз), что свидетельствует об интенсивном синтезе ферментов, необходимых для дальнейшего роста и развития клетки.

      Фаза – ускорение роста.

    Характеризуется постоянной относительной скоростью деления клеток. В этот период число клеток возрастает по экспоненте. Удельная скорость остается постоянной и максимальной, а абсолютная скорость быстро возрастает. Скорость деления клеток в фазе ускоренного роста является максимальной для них, причем для различных видов бактерий и условий окружающей среды эта скорость различна, так например, кишечная палочка в этой фазе делится каждые 20 минут, для некоторых почвенных бактерий время генерации 60-150 минут, а у нитрифицирующих бактерий 5-10 часов. В течении этой фазы величина клеток и их химический состав остаются постоянными.

      Фаза – линейного роста.

    Эта фаза характеризуется резким снижением удельной скорости роста, т.е. увеличением времени генерации. Причиной этому служит начинающийся дефицит питательных веществ и избыточное содержание в среде продуктов обмена, которые в определенной концентрации негативно влияют на рост популяции. В этот период количество бактерий увеличивается линейно, а абсолютная скорость достигает максимума.

      Фаза – замедление роста.

    В этот период дефицит питательных веществ и концентрации продуктов обмена продолжают увеличиваться, что сказывается на падении абсолютной и относительной скоростей роста. Увеличение количества клеток постепенно замедляется и к концу фазы и к концу фазы приближается к максимуму. В этот период характеристика отмирания части наименее приспособленных клеток.

    II,IIIиIVфазы объединяются в одну фазуроста.

      Фаза- стационарная.

    В течение этой фазы количество живых клеток в культуре сохраняется примерно постоянным, т.к. число вновь образующихся клеток равно числу отмирающих. Абсолютная и относительная скорости роста приближаются к нулевой отметке. Отмирание или выживание бактерий в этой фазе не является случайными событиями. Выживают как правило те клетки, которые способны качественно перестроить свой обмен веществ. Для всех бактерий в этой фазе характерно использование запасенных веществ, распад части клеточных веществ, биомассы статической культуры в этой фазе достигает максимума и поэтому называется выходом или урожаем культуры. количество урожая зависит от видовой принадлежности микроорганизмов, от природы и количества питательных веществ, а так же от условий культивирования. В микробных производствах проточные микробные культуры поддерживают в стационарной фазе развития.

      Фаза – отмирание.

    Эта фаза наступает в тот момент когда концентрация какого либо из необходимых клеткам питательных веществ, падает до условного нуля, или когда какой-либо продукт обмена достигает такой концентрации в среде, при которой он токсичен для большинства клеток. Абсолютная и удельная скорости роста отрицательны, что говорит об отсутствии деления клеток.

    № 60 Классы иммуноглобулинов, их характеристика.

    Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD.

    Иммуноглобулин класса G . Изотип G состав­ляет основную массу Ig сыворотки крови. На его долю приходится 70-80 % всех сывороточ­ных Ig, при этом 50 % содержится в тканевой жидкости. Среднее содержание IgG в сыворот­ке крови здорового взрослого человека 12 г/л. Период полураспада IgG - 21 день.

    IgG - мономер, имеет 2 антигенсвязывающих центра (может одновременно свя­зать 2 молекулы антигена, следовательно, его валентность равна 2), молекулярную массу около 160 кДа и константу седиментации 7S. Различают подтипы Gl, G2, G3 и G4. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

    Обладает высокой аффинностью. IgGl и IgG3 связывают комплемент, причем G3 ак­тивнее, чем Gl. IgG4, подобно IgE, обладает цитофильностью (тропностью, или сродс­твом, к тучным клеткам и базофилам) и участ­вует в развитии аллергической реакции I типа. В иммунодиагностических реакциях IgG может проявлять себя как не­полное антитело.

    Легко проходит через плацентарный барь­ер и обеспечивает гуморальный иммунитет новорожденного в первые 3-4 месяца жизни. Способен также выделяться в секрет слизис­тых, в том числе в молоко путем диффузии.

    IgG обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

    Иммуноглобулин класса М. Наиболее круп­ная молекула из всех Ig. Это пентамер, кото­рый имеет 10 антигенсвязывающих центров, т. е. его валентность равна 10. Молекулярная масса его около 900 кДа, константа седи­ментации 19S. Различают подтипы Ml и М2. Тяжелые цепи молекулы IgM в отличие от других изотипов построены из 5 доменов. Период полураспада IgM - 5 дней.

    На его долю приходится около 5-10 % всех сывороточных Ig. Среднее содержание IgM в сыворотке крови здорового взрослого человека составляет около 1 г/л. Этот уровень у человека достигается уже к 2-4-летнему возрасту.

    IgM филогенетически - наиболее древний иммуноглобулин. Синтезируется предшест­венниками и зрелыми В-лимфоцитами. Образуется в начале первичного иммунного ответа, также первым начинает синтезиро­ваться в организме новорожденного - опре­деляется уже на 20-й неделе внутриутробного развития.

    Обладает высокой авидностью, наиболее эффективный активатор комплемента по клас­сическому пути. Участвует в формировании сывороточного и секреторного гуморального иммунитета. Являясь полимерной молекулой, содержащей J-цепь, может образовывать сек­реторную форму и выделяться в секрет сли­зистых, в том числе в молоко. Большая часть нормальных антител и изоагглютининов относится к IgM.

    Не проходит через плаценту. Обнаружение специфических антител изотипа М в сыво­ротке крови новорожденного указывает на бывшую внутриутробную инфекцию или де­фект плаценты.

    IgM обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

    Иммуноглобулин класса А. Существует в сы­вороточной и секреторной формах. Около 60 % всех IgA содержится в секретах слизистых.

    Сывороточный IgA : На его долю прихо­дится около 10-15% всех сывороточных Ig. В сыворотке крови здорового взрослого чело­века содержится около 2,5 г/л IgA, максимум достигается к 10-летнему возрасту. Период полураспада IgA - 6 дней.

    IgA - мономер, имеет 2 антигенсвязывающих центра (т. е. 2-валентный), молекуляр­ную массу около 170 кДа и константу седи­ментации 7S. Различают подтипы А1 и А2. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

    Обладает высокой аффинностью. Может быть неполным антителом. Не связывает комплемент. Не проходит через плацентар­ный барьер.

    IgA обеспечивает нейтрализацию, опсони-зацию и маркирование антигена, осуществля­ет запуск антителозависимой клеточно-опос-редованной цитотоксичности.

    Секреторный IgA : В отличие от сывороточ­ного, секреторный sIgA существует в полимерной форме в виде ди- или тримера (4- или 6-валентный) и содержит J- и S-пeптиды. Молекулярная масса 350 кДа и выше, константа седиментации 13S и выше.

    Синтезируется зрелыми В-лимфоцитами и их по­томками - плазматическими клетками со­ответствующей специализации только в пре­делах слизистых и выделяется в их секреты. Объем продукции может достигать 5 г в сутки. Пул slgA считается самым многочисленным в организме - его количество превышает суммарное содержание IgM и IgG. В сыворотке крови не обнаруживается.

    Секреторная форма IgA - основной фак­тор специфического гуморального местного иммунитета слизистых оболочек желудочно-кишечного тракта, мочеполовой системы и респираторного тракта. Благодаря S-цепи он устойчив к действию протеаз. slgA не активи­рует комплемент, но эффективно связывается с антигенами и нейтрализует их. Он препятс­твует адгезии микробов на эпителиальных клетках и генерализации инфекции в преде­лах слизистых.

    Иммуноглобулин класса Е. Называют так­же реагином. Содержание в сыворотке крови крайне невысоко - примерно 0,00025 г/л. Обнаружение требует применения специаль­ных высокочувствительных методов диагнос­тики. Молекулярная масса - около 190 кДа, константа седиментации - примерно 8S, мо­номер. На его долю приходится около 0,002 % всех циркулирующих Ig. Этот уровень дости­гается к 10-15 годам жизни.

    Синтезируется зрелыми В-лимфоцитами и плазматическими клетками преиму­щественно в лимфоидной ткани бронхолегочного дерева и ЖКТ.

    Не связывает комплемент. Не проходит че­рез плацентарный барьер. Обладает выражен­ной цитофильностью - тропностью к тучным клеткам и базофилам. Участвует в развитии гиперчувствительности немедленного типа - реакция I типа.

    Иммуноглобулин класса D . Сведений об Ig данного изотипа не так много. Практически полностью содержится в сыворотке крови в концентрации около 0,03 г/л (около 0,2 % от общего числа циркулирующих Ig). IgD имеет молекулярную массу 160 кДа и константу се­диментации 7S, мономер.

    Не связывает комплемент. Не проходит че­рез плацентарный барьер. Является рецепто­ром предшественников В-лимфоцитов.

    Выбор редакции
    Сова во сне может означать абсолютно разные события в вашей жизни. Всё зависит от того, какого окраса была птица, и при каких...

    Любая магическая практика имеет в своем арсенале привороты, пробуждающие чувства в том, на кого они направлены. Это могут быть белое...

    Молитва к святителю Спиридону — это не заговор или собеседование на работу. Это общение со святым древних времен, ставшим родным и...

    "- В монастырь к нам желаете? - обернулся ко мне кучер, похлестывая пару сытеньких коней, неохотно взбиравшихся в гору.- Да, обитель...
    Пятнадцать патриархатов.Православие (с греч. правильное суждение,) – направление в христианстве, сформировавшиеся в течении первого...
    Синтез цвет. Получение заданного цвета сложением других цветов называется его синтезом. Как же синтез цвета осуществляется, какие...
    Курсовая В этом приближенном методе расчета состояние молекулы описывается так называемой волновой функцией ш, которая составляется по...
    Играет важную роль в физиологии человека. Содержится во многих растительных маслах, в частности, в оливковом, и в животных жирах. Входит...
    Cодержание статьи: classList.toggle()">развернуть Ломота в теле – это частый клинический симптом различных отравлений,...