Понятие функции. Основные свойства функции


Длина отрезка на координатной оси находится по формуле:

Длина отрезка на координатной плоскости ищется по формуле:

Для нахождения длины отрезка в трёхмерной системе координат используется следующая формула:

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости - первые две формулы, для трехмерной системы координат - все три формулы) вычисляются по формулам:

Функция – это соответствие вида y = f (x ) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой переменной величины x (аргумента или независимой переменной) соответствует определенное значение другой переменной величины, y (зависимой переменной, иногда это значение просто называют значением функции). Обратите внимание, что функция подразумевает, что одному значению аргумента х может соответствовать только одно значение зависимой переменной у . При этом одно и то же значение у может быть получено при различных х .

Область определения функции – это все значения независимой переменной (аргумента функции, обычно это х ), при которых функция определена, т.е. ее значение существует. Обозначается область определения D (y ). По большому счету Вы уже знакомы с этим понятием. Область определения функции по другому называется областью допустимых значений, или ОДЗ, которую Вы давно умеете находить.

Область значений функции – это все возможные значения зависимой переменной данной функции. Обозначается Е (у ).

Функция возрастает на промежутке, на котором большему значению аргумента соответствует большее значение функции. Функция убывает на промежутке, на котором большему значению аргумента соответствует меньшее значение функции.

Промежутки знакопостоянства функции – это промежутки независимой переменной, на которых зависимая переменная сохраняет свой положительный или отрицательный знак.

Нули функции – это такие значения аргумента, при которых величина функции равна нулю. В этих точках график функции пересекает ось абсцисс (ось ОХ). Очень часто необходимость найти нули функции означает необходимость просто решить уравнение. Также часто необходимость найти промежутки знакопостоянства означает необходимость просто решить неравенство.

Функцию y = f (x ) называют четной х

Это означает, что для любых противоположных значений аргумента, значения четной функции равны. График чётной функции всегда симметричен относительно оси ординат ОУ.

Функцию y = f (x ) называют нечетной , если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения нечетной функции также противоположны. График нечётной функции всегда симметричен относительно начала координат.

Сумма корней чётной и нечетной функций (точек пересечения оси абсцисс ОХ) всегда равна нулю, т.к. на каждый положительный корень х приходится отрицательный корень –х .

Важно отметить: некоторая функция не обязательно должна быть четной либо нечетной. Существует множество функций не являющихся ни четными ни нечетными. Такие функции называются функциями общего вида , и для них не выполняется ни одно из равенств или свойств приведенных выше.

Линейной функцией называют функцию, которую можно задать формулой:

График линейной функции представляет из себя прямую и в общем случае выглядит следующим образом (приведен пример для случая когда k > 0, в этом случае функция возрастающая; для случая k < 0 функция будет убывающей, т.е. прямая будет наклонена в другую сторону - слева направо):

График квадратичной функции (Парабола)

График параболы задается квадратичной функцией:

Квадратичная функция, как и любая другая функция, пересекает ось ОХ в точках являющихся её корнями: (x 1 ; 0) и (x 2 ; 0). Если корней нет, значит квадратичная функция ось ОХ не пересекает, если корень один, значит в этой точке (x 0 ; 0) квадратичная функция только касается оси ОХ, но не пересекает её. Квадратичная функция всегда пересекает ось OY в точке с координатами: (0; c ). График квадратичной функции (парабола) может выглядеть следующим образом (на рисунке примеры, которые далеко не исчерпывают все возможные виды парабол):

При этом:

  • если коэффициент a > 0, в функции y = ax 2 + bx + c , то ветви параболы направлены вверх;
  • если же a < 0, то ветви параболы направлены вниз.

Координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины (p - на рисунках выше) параболы (или точка в которой квадратный трехчлен достигает своего наибольшего или наименьшего значения):

Игрек вершины (q - на рисунках выше) параболы или максимальное, если ветви параболы направлены вниз (a < 0), либо минимальное, если ветви параболы направлены вверх (a > 0), значение квадратного трехчлена:

Графики других функций

Степенной функцией

Приведем несколько примеров графиков степенных функций:

Обратно пропорциональной зависимостью называют функцию, заданную формулой:

В зависимости от знака числа k график обратно пропорциональной зависимости может иметь два принципиальных варианта:

Асимптота - это линия, к которой линия графика функции бесконечно близко приближается, но не пересекает. Асимптотами для графиков обратной пропорциональности приведенных на рисунке выше являются оси координат, к которым график функции бесконечно близко приближается, но не пересекает их.

Показательной функцией с основанием а называют функцию, заданную формулой:

a график показательной функции может иметь два принципиальных варианта (приведем также примеры, см. ниже):

Логарифмической функцией называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график логарифмической функции может иметь два принципиальных варианта:

График функции y = |x | выглядит следующим образом:

Графики периодических (тригонометрических) функций

Функция у = f (x ) называется периодической , если существует такое, неравное нулю, число Т , что f (x + Т ) = f (x ), для любого х из области определения функции f (x ). Если функция f (x ) является периодической с периодом T , то функция:

где: A , k , b – постоянные числа, причем k не равно нулю, также периодическая с периодом T 1 , который определяется формулой:

Большинство примеров периодических функций - это тригонометрические функции. Приведем графики основных тригонометрических функций. На следующем рисунке изображена часть графика функции y = sinx (весь график неограниченно продолжается влево и вправо), график функции y = sinx называют синусоидой :

График функции y = cosx называется косинусоидой . Этот график изображен на следующем рисунке. Так как и график синуса он бесконечно продолжается вдоль оси ОХ влево и вправо:

График функции y = tgx называют тангенсоидой . Этот график изображен на следующем рисунке. Как и графики других периодических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Ну и наконец, график функции y = ctgx называется котангенсоидой . Этот график изображен на следующем рисунке. Как и графики других периодических и тригонометрических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Русская гимназия

    КОНСПЕКТ

    Выполнил

    ученик 10“Ф” класса Бурмистров Сергей

    Руководитель

    учитель Математики

    Юлина О.А.

    Нижний Новгород


    Функция и её свойства

    Функция- зависимость переменной у от переменной x , если каждому значению х соответствует единственное значение у .

    Переменная х- независимая переменная или аргумент.

    Переменная у- зависимая переменная

    Значение функции- значение у , соответствующее заданному значению х .

    Область определения функции- все значения, которые принимает независимая переменная.

    Область значений функции (множество значений)- все значения, которые принимает функция.

    Функция является четной- если для любого х f(x)=f(-x)

    Функция является нечетной- если для любого х из области определения функции выполняется равенство f(-x)=-f(x)

    Возрастающая функция- если для любых х 1 и х 2 , таких, что х 1 < х 2 , выполняется неравенство f( х 1 ) х 2 )

    Убывающая функция- если для любых х 1 и х 2 , таких, что х 1 < х 2 , выполняется неравенство f( х 1 )>f( х 2 )

    Способы задания функции

    ¨ Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у =f(x) , где f(x)- íåêîòîðîå âыðàæåíèå с переменной х . В таком случае говорят, что функция задана формулой или что функция задана аналитически.

    ¨ На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента. Примерами табличного задания функции являются таблица квадратов, таблица кубов.

    Виды функций и их свойства

    1) Постоянная функция- функция, заданная формулой у= b , где b- некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат

    2) Прямая пропорциональность- функция, заданная формулой у= kx , где к¹0. Число k называется коэффициентом пропорциональности .

    Cвойства функции y=kx :

    1. Область определения функции- множество всех действительных чисел

    2. y=kx - нечетная функция

    3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой

    3)Линейная функция- функция, которая задана формулой y=kx+b , где k иb - действительные числа. Если в частности, k=0 , то получаем постоянную функцию y=b ; если b=0 , то получаем прямую пропорциональность y=kx .

    Свойства функции y=kx+b :

    1. Область определения- множество всех действительных чисел

    2. Функция y=kx+b общего вида, т.е. ни чётна, ни нечётна.

    3. При k>0функция возрастает, а при k<0 убывает на всей числовой прямой

    Графиком функции является прямая .

    4)Обратная пропорциональность- функция, заданная формулой y=k /х, где k¹0 Число k называют коэффициентом обратной пропорциональности.

    Свойства функции y=k / x:

    1. Область определения- множество всех действительных чисел кроме нуля

    2. y=k / x - нечетная функция

    3. Если k>0, то функция убывает на промежутке (0;+¥) и на промежутке (-¥;0). Если k<0, то функция возрастает на промежутке (-¥;0) и на промежутке (0;+¥).

    Графиком функции является гипербола .

    5)Функция y=x 2

    Свойства функции y=x 2:

    2. y=x 2 - четная функция

    3. На промежутке функция убывает

    Графиком функции является парабола .

    6)Функция y=x 3

    Свойства функции y=x 3:

    1. Область определения- вся числовая прямая

    2. y=x 3 - нечетная функция

    3. Функция возрастает на всей числовой прямой

    Графиком функции является кубическая парабола

    7)Степенная функция с натуральным показателем- функция, заданная формулой y=x n , где n - натуральное число. При n=1 получаем функцию y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x 2 ; y=x 3 . Их свойства рассмотрены выше.

    Пусть n- произвольное четное число, большее двух: 4,6,8... В этом случае функция y=x n обладает теми же свойствами, что и функция y=x 2 . График функции напоминает параболу y=x 2 , только ветви графика при |х|>1 тем круче идут вверх, чем больше n, а при |х|<1 тем “теснее прижимаются” к оси Х, чем больше n.

    Пусть n- произвольное нечетное число, большее трех: 5,7,9... В этом случае функция y=x n обладает теми же свойствами, что и функция y=x 3 . График функции напоминает кубическую параболу.

    8)Степенная функция с целым отрицательным показателем- функция, заданная формулой y=x -n , где n - натуральное число. При n=1 получаем y=1/х, свойства этой функции рассмотрены в п.4.

    Пусть n- нечетное число, большее единицы: 3,5,7... В этом случае функция y=x -n обладает в основном теми же свойствами, что и функция y=1/х.

    Пусть n- четное число, например n=2.

    Свойства функции y=x -2 :

    1. Функция определена при всех x¹0

    2. y=x -2 - четная функция

    3. Функция убывает на (0;+¥) и возрастает на (-¥;0).

    Теми же свойствами обладают любые функции при четном n, большем двух.

    9)Функция y= Ö х

    Свойства функции y= Ö х :

    1. Область определения - луч .

    Областью значений функции явл. промежуток [ 1; 3].

    1. При x = -3, x =- 1, x = 1,5, х=4,5 значение функции равно нулю.

    Значение аргумента, при котором значение функции равно нулю, называют нулем функции.

    //т.е. для данной функции числа -3;-1;1,5; 4,5 являются нулями.

    2. На промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] график функции f расположен над осью абсцисс, а на промежутках (-3; -1) и (1,5; 4,5) под осью абсцисс, это объясняется так -на промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] функция принимает положительные значения, а на промежутках (-3; -1) и (1,5; 4,5) отрицательные.

    Каждый из указанных промежутков (там где функция принимает значения одного и того же знака) называют промежутком знакопостоянства функции f.//т.е. например, если взять промежуток (0; 3), то он не является промежутком знакопостоянства данной функции.

    В математике принято при поиске промежутков знакопостоянства функции указывать промежутки максимальной длины. //Т.е. промежуток (2; 3) является промежутком знакопостоянства функции f, но в ответ следует включить промежуток [ 4,5; 3), содержащий промежуток (2; 3).

    3. Если перемещаться по оси абсцисс от 4,5 до 2, то можно заметить, что график функции идет вниз, то есть значения функции уменьшаются. //В математике принято говорить, что на промежутке [ 4,5; 2] функция убывает.

    С увеличением x от 2 до 0 график функции идет вверх, т.е. значения функции увеличиваются. //В математике принято говорить, что на промежутке [ 2; 0] функция возрастает.

    Функцию f называют , если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f (x2) > f (x1). // или Функцию называют возрастающей на некотором промежутке , если для любых значений аргумента из этого промежутка большему значению аргумента соответствует большее значение функции.//т.е. чем больше х, тем больше у.

    Функцию f называют убывающей на некотором промежутке , если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f(x2)убывающей на некотором промежутке, если для любых значений аргумента из этого промежутка большему значению аргумента соответствует меньшее значение функции. //т.е. чем больше х, тем меньше у.

    Если функция возрастает на всей области определения, то ее называют возрастающей .

    Если функция убывает на всей области определения, то ее называют убывающей .

    Пример 1. график возрастающей и убывающей функций соотвественно.

    Пример 2.

    Определить явл. ли линейная функция f (x) = 3x + 5 возрастающей или убывающей?

    Доказательство. Воспрользуемся определениями. Пусть х1 и x2 произвольные значения аргумента, причем x1 < x2., например х1=1, х2=7

    Выбор редакции
    Я очень люблю делать слоеный салаты на праздник, т. к. это довольно удобно для меня, ведь такой салат можно сделать накануне, а не...

    Пряник – это традиционная русская сладость, которую принято пить с чаем. Появились эти вкусности еще в древности. Основными ингредиентами...

    В Саратове наступило самое настоящее лето! Зной и пыль(На каждом углу продают квас и мороженое, и детей всегда сложно провести мимо этих...

    1 стакан чечевицы свежие грибы (белые или шампиньоны) - 300 гр. лук-репка - 1 шт. морковь -1 шт. 4 клубня картофеля растительное...
    Творожная диета для похудения представляет собой быстрый (в отношении продолжительности), легкий (в отношении рациона питания), полезный...
    Рецепт быстрого приготовления спагетти по-итальянски с чесноком, красным перцем и оливковым маслом. Все о пользе классических макарон...
    Сон о лавине снега предвещает наступление рискованной ситуации, в которой вы можете оказаться по собственной вине. Любое необдуманное...
    Символ тяжелого труда, трудной дороги. По наличию мозолей на руках определяли, что человек из крестьян, из рабочей среды. Сбитые в кровь...
    Сторонники запрета на гадание приводят следующие доводы: Просмотр вероятностей развития событий может нарушить равновесие в сторону срыва...