Простейшие тригонометрические тождества. Тригонометрические тождества


В статье подробно рассказывается об основных тригонометрических тождествах.Эти равенства устанавливают связь между sin , cos , t g , c t g заданного угла. При известной одной функции можно через нее найти другую.

Тригонометрические тождества для рассмотрения в денной статье. Ниже покажем пример их выведения с объяснением.

sin 2 α + cos 2 α = 1 t g α = sin α cos α , c t g α = cos α sin α t g α · c t g α = 1 t g 2 α + 1 = 1 cos 2 α , 1 + c t g 2 α = 1 sin 2 α

Yandex.RTB R-A-339285-1

Поговорим о важном тригонометрическом тождестве, которое считается основой основ в тригонометрии.

sin 2 α + cos 2 α = 1

Заданные равенства t g 2 α + 1 = 1 cos 2 α , 1 + c t g 2 α = 1 sin 2 α выводят из основного путем деления обеих частей на sin 2 α и cos 2 α . После чего получаем t g α = sin α cos α , c t g α = cos α sin α и t g α · c t g α = 1 - это следствие определений синуса, косинуса, тангенса и котангенса.

Равенство sin 2 α + cos 2 α = 1 является основным тригонометрическим тождеством. Для его доказательства необходимо обратиться к теме с единичной окружностью.

Пусть даны координаты точки А (1 , 0) , которая после поворота на угол α становится в точку А 1 . По определению sin и cos точка А 1 получит координаты (cos α , sin α) . Так как А 1 находится в пределах единичной окружности, значит, координаты должны удовлетворят условию x 2 + y 2 = 1 этой окружности. Выражение cos 2 α + sin 2 α = 1 должно быть справедливым. Для этого необходимо доказать основное тригонометрическое тождество для всех углов поворота α .

В тригонометрии выражение sin 2 α + cos 2 α = 1 применяют как теорему Пифагора в тригонометрии. Для этого рассмотрим подробное доказательство.

Используя единичную окружность, поворачиваем точку А с координатами (1 , 0) вокруг центральной точки О на угол α . После поворота точка меняет координаты и становится равной А 1 (х, у) . Опускаем перпендикулярную прямую А 1 Н на О х из точки А 1 .

На рисунке отлично видно, что образовался прямоугольный треугольник О А 1 Н. По модулю катеты О А 1 Н и О Н равные, запись примет такой вид: | А 1 H | = | у | , | О Н | = | х | . Гипотенуза О А 1 имеет значение равное радиусу единичной окружности, | О А 1 | = 1 . Используя данное выражение, можем записать равенство по теореме Пифагора: | А 1 Н | 2 + | О Н | 2 = | О А 1 | 2 . Это равенство запишем как | y | 2 + | x | 2 = 1 2 , что означает y 2 + x 2 = 1 .

Используя определение sin α = y и cos α = x , подставим данные угла вместо координат точек и перейдем к неравенству sin 2 α + cos 2 α = 1 .

Основная связь между sin и cos угла возможна через данное тригонометрическое тождество. Таким образом, можно считать sin угла с известным cos и наоборот. Чтобы выполнить это, необходимо разрешать sin 2 α + cos 2 = 1 относительно sin и cos , тогда получим выражения вида sin α = ± 1 - cos 2 α и cos α = ± 1 - sin 2 α соответственно. Величина угла α определяет знак перед корнем выражения. Для подробного выяснения необходимо прочитать раздел вычисление синуса, косинуса, тангенса и котангенса с использованием тригонометрических формул.

Чаще всего основную формулу применяют для преобразований или упрощений тригонометрических выражений. Имеется возможность заменять сумму квадратов синуса и косинуса на 1 . Подстановка тождества может быть как в прямом, так и обратном порядке: единицу заменяют на выражение суммы квадратов синуса и косинуса.

Тангенс и котангенс через синус и косинус

Из определения косинуса и синуса, тангенса и котангенса видно, что они взаимосвязаны друг с другом, что позволяет отдельно преобразовывать необходимые величины.

t g α = sin α cos α c t g α = cos α sin α

Из определения синус является ординатой у, а косинус – абсциссой x . Тангенс – это и есть отношения ординаты и абсциссы. Таким образом имеем:

t g α = y x = sin α cos α , а выражение котангенса имеет обратное значение, то есть

c t g α = x y = cos α sin α .

Отсюда следует, что полученные тождества t g α = sin α cos α и c t g α = cos α sin α задаются с помощью sin и cos углов. Тангенс считаются отношением синуса к косинусу угла между ними, а котангенс наоборот.

Отметим, что t g α = sin α cos α и c t g α = cos α sin α верны для любого значение угла α , значения которого входят в диапазон. Из формулы t g α = sin α cos α значение угла α отлично от π 2 + π · z , а c t g α = cos α sin α принимает значение угла α , отличные от π · z , z принимает значение любого целого числа.

Связь между тангенсом и котангенсом

Имеется формула, которая показывает связь между углами через тангенс и котангенс. Данное тригонометрическое тождество является важным в тригонометрии и обозначается как t g α · c t g α = 1 . Оно имеет смысл при α с любым значением, кроме π 2 · z , иначе функции будут не определены.

Формула t g α · c t g α = 1 имеет свои особенности в доказательстве. Из определения мы имеем, что t g α = y x и c t g α = x y , отсюда получаем t g α · c t g α = y x · x y = 1 . Преобразовав выражение и подставив t g α = sin α cos α и c t g α = cos α sin α , получим t g α · c t g α = sin α cos α · cos α sin α = 1 .

Тогда выражение тангенса и котангенса имеет смысл того, когда в итоге получаем взаимно обратные числа.

Тангенс и косинус, котангенс и синус

Преобразовав основные тождества, приходим к выводу, что тангенс связан через косинус, а котангенс через синус. Это видно по формулам t g 2 α + 1 = 1 cos 2 α , 1 + c t g 2 α = 1 sin 2 α .

Определение звучит так: сумма квадрата тангенса угла и 1 приравнивается к дроби, где в числителе имеем 1 , а в знаменателе квадрат косинуса данного угла, а сумма квадрата котангенса угла наоборот. Благодаря тригонометрическому тождеству sin 2 α + cos 2 α = 1 , можно разделить соответствующие стороны на cos 2 α и получить t g 2 α + 1 = 1 cos 2 α , где значение cos 2 α не должно равняться нулю. При делении на sin 2 α получим тождество 1 + c t g 2 α = 1 sin 2 α , где значение sin 2 α не должно равняться нулю.

Из приведенных выражений получили, что тождество t g 2 α + 1 = 1 cos 2 α верно при всех значениях угла α , не принадлежащих π 2 + π · z , а 1 + c t g 2 α = 1 sin 2 α при значениях α , не принадлежащих промежутку π · z .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Copyright by cleverstudents

    Все права защищены.
    Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

    Вы можете заказать подробное решение вашей задачи !!!

    Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

    Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

    1. Уравнение `sin x=a`.

    При `|a|>1` не имеет решений.

    При `|a| \leq 1` имеет бесконечное число решений.

    Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

    2. Уравнение `cos x=a`

    При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

    При `|a| \leq 1` имеет бесконечное множество решений.

    Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

    Частные случаи для синуса и косинуса в графиках.

    3. Уравнение `tg x=a`

    Имеет бесконечное множество решений при любых значениях `a`.

    Формула корней: `x=arctg a + \pi n, n \in Z`

    4. Уравнение `ctg x=a`

    Также имеет бесконечное множество решений при любых значениях `a`.

    Формула корней: `x=arcctg a + \pi n, n \in Z`

    Формулы корней тригонометрических уравнений в таблице

    Для синуса:
    Для косинуса:
    Для тангенса и котангенса:
    Формулы решения уравнений, содержащих обратные тригонометрические функции:

    Методы решения тригонометрических уравнений

    Решение любого тригонометрического уравнения состоит из двух этапов:

    • с помощью преобразовать его до простейшего;
    • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

    Рассмотрим на примерах основные методы решения.

    Алгебраический метод.

    В этом методе делается замена переменной и ее подстановка в равенство.

    Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

    `2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

    делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

    находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

    1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

    2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

    Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

    Разложение на множители.

    Пример. Решить уравнение: `sin x+cos x=1`.

    Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя , преобразуем и разложим на множители левую часть:

    `sin x — 2sin^2 x/2=0`,

    `2sin x/2 cos x/2-2sin^2 x/2=0`,

    `2sin x/2 (cos x/2-sin x/2)=0`,

    1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
    2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

    Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

    Приведение к однородному уравнению

    Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

    `a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

    Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

    Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

    Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

    `2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

    `2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

    `sin^2 x+sin x cos x — 2 cos^2 x=0`.

    Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

    `\frac {sin^2 x}{cos^2 x}+\frac{sin x cos x}{cos^2 x} — \frac{2 cos^2 x}{cos^2 x}=0`

    `tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

    1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
    2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

    Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

    Переход к половинному углу

    Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

    Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

    `4 tg^2 x/2 — 11 tg x/2 +6=0`

    Применив описанный выше алгебраический метод, получим:

    1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
    2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

    Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

    Введение вспомогательного угла

    В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:

    `\frac a{sqrt {a^2+b^2}} sin x +` `\frac b{sqrt {a^2+b^2}} cos x =` `\frac c{sqrt {a^2+b^2}}`.

    Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a{sqrt {a^2+b^2}}=cos \varphi`, ` \frac b{sqrt {a^2+b^2}} =sin \varphi`, `\frac c{sqrt {a^2+b^2}}=C`, тогда:

    `cos \varphi sin x + sin \varphi cos x =C`.

    Подробнее рассмотрим на следующем примере:

    Пример. Решить уравнение: `3 sin x+4 cos x=2`.

    Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:

    `\frac {3 sin x} {sqrt {3^2+4^2}}+` `\frac{4 cos x}{sqrt {3^2+4^2}}=` `\frac 2{sqrt {3^2+4^2}}`

    `3/5 sin x+4/5 cos x=2/5`.

    Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

    `cos \varphi sin x+sin \varphi cos x=2/5`

    Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

    `sin (x+\varphi)=2/5`,

    `x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

    `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

    Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

    Дробно-рациональные тригонометрические уравнения

    Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

    Пример. Решить уравнение. `\frac {sin x}{1+cos x}=1-cos x`.

    Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

    `\frac {sin x}{1+cos x}=` `\frac {(1-cos x)(1+cos x)}{1+cos x}`

    `\frac {sin x}{1+cos x}=` `\frac {1-cos^2 x}{1+cos x}`

    `\frac {sin x}{1+cos x}=` `\frac {sin^2 x}{1+cos x}`

    `\frac {sin x}{1+cos x}-` `\frac {sin^2 x}{1+cos x}=0`

    `\frac {sin x-sin^2 x}{1+cos x}=0`

    Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

    Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

    1. `sin x=0`, `x=\pi n`, `n \in Z`
    2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

    Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

    Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

    Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

    Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

    Это последний и самый главный урок, необходимый для решения задач B11. Мы уже знаем, как переводить углы из радианной меры в градусную (см. урок «Радианная и градусная мера угла »), а также умеем определять знак тригонометрической функции, ориентируясь по координатным четвертям (см. урок «Знаки тригонометрических функций »).

    Дело осталось за малым: вычислить значение самой функции - то самое число, которое записывается в ответ. Здесь на помощь приходит основное тригонометрическое тождество.

    Основное тригонометрическое тождество. Для любого угла α верно утверждение:

    sin 2 α + cos 2 α = 1.

    Эта формула связывает синус и косинус одного угла. Теперь, зная синус, мы легко найдем косинус - и наоборот. Достаточно извлечь квадратный корень:

    Обратите внимание на знак «±» перед корнями. Дело в том, что из основного тригонометрического тождества непонятно, каким был исходный синус и косинус: положительным или отрицательным. Ведь возведение в квадрат - четная функция, которая «сжигает» все минусы (если они были).

    Именно поэтому во всех задачах B11, которые встречаются в ЕГЭ по математике, обязательно есть дополнительные условия, которые помогают избавиться от неопределенности со знаками. Обычно это указание на координатную четверть, по которой можно определить знак.

    Внимательный читатель наверняка спросит: «А как быть с тангенсом и котангенсом?» Напрямую вычислить эти функции из приведенных выше формул нельзя. Однако существуют важные следствия из основного тригонометрического тождества, которые уже содержат тангенсы и котангенсы. А именно:

    Важное следствие: для любого угла α можно переписать основное тригонометрическое тождество следующим образом:

    Эти уравнения легко выводятся из основного тождества - достаточно разделить обе стороны на cos 2 α (для получения тангенса) или на sin 2 α (для котангенса).

    Рассмотрим все это на конкретных примерах. Ниже приведены настоящие задачи B11, которые взяты из пробных вариантов ЕГЭ по математике 2012.

    Нам известен косинус, но неизвестен синус. Основное тригонометрическое тождество (в «чистом» виде) связывает как раз эти функции, поэтому будем работать с ним. Имеем:

    sin 2 α + cos 2 α = 1 ⇒ sin 2 α + 99/100 = 1 ⇒ sin 2 α = 1/100 ⇒ sin α = ±1/10 = ±0,1.

    Для решения задачи осталось найти знак синуса. Поскольку угол α ∈ (π /2; π ), то в градусной мере это записывается так: α ∈ (90°; 180°).

    Следовательно, угол α лежит во II координатной четверти - все синусы там положительны. Поэтому sin α = 0,1.

    Итак, нам известен синус, а надо найти косинус. Обе эти функции есть в основном тригонометрическом тождестве. Подставляем:

    sin 2 α + cos 2 α = 1 ⇒ 3/4 + cos 2 α = 1 ⇒ cos 2 α = 1/4 ⇒ cos α = ±1/2 = ±0,5.

    Осталось разобраться со знаком перед дробью. Что выбрать: плюс или минус? По условию, угол α принадлежит промежутку (π 3π /2). Переведем углы из радианной меры в градусную - получим: α ∈ (180°; 270°).

    Очевидно, это III координатная четверть, где все косинусы отрицательны. Поэтому cos α = −0,5.

    Задача. Найдите tg α , если известно следующее:

    Тангенс и косинус связаны уравнением, следующим из основного тригонометрического тождества:

    Получаем: tg α = ±3. Знак тангенса определяем по углу α . Известно, что α ∈ (3π /2; 2π ). Переведем углы из радианной меры в градусную - получим α ∈ (270°; 360°).

    Очевидно, это IV координатная четверть, где все тангенсы отрицательны. Поэтому tg α = −3.

    Задача. Найдите cos α , если известно следующее:

    Снова известен синус и неизвестен косинус. Запишем основное тригонометрическое тождество:

    sin 2 α + cos 2 α = 1 ⇒ 0,64 + cos 2 α = 1 ⇒ cos 2 α = 0,36 ⇒ cos α = ±0,6.

    Знак определяем по углу. Имеем: α ∈ (3π /2; 2π ). Переведем углы из градусной меры в радианную: α ∈ (270°; 360°) - это IV координатная четверть, косинусы там положительны. Следовательно, cos α = 0,6.

    Задача. Найдите sin α , если известно следующее:

    Запишем формулу, которая следует из основного тригонометрического тождества и напрямую связывает синус и котангенс:

    Отсюда получаем, что sin 2 α = 1/25, т.е. sin α = ±1/5 = ±0,2. Известно, что угол α ∈ (0; π /2). В градусной мере это записывается так: α ∈ (0°; 90°) - I координатная четверть.

    Итак, угол находится в I координатной четверти - все тригонометрические функции там положительны, поэтому sin α = 0,2.

    Выбор редакции
    Алкогольные коктейли, в том числе и «Ром Кола», являются в своем роде произведениями искусства. Их назначение заключается в формировании...

    В этой статье о сливовом вине будет, пожалуй, больше теории, чем практики, но, во-первых, чтоб отлично проходили практические занятия по...

    Печь хлеб, который олицетворяет в народном сознании самое насущное, означает укрепление благосостояния. Насколько человек разбогатеет,...

    Иногда сны нас удивляют и даже шокируют. Например, к чему снятся роды – многим интересно, ведь такое бывает не каждый день! И одно дело,...
    Самые ценные рецепты те, которые помогают варить консервацию очень быстро и в то же время получить вкусный продукт. Как раз с такого и...
    Интересное сновидение, которое имеет довольно большое количество значений. Обычно рыжие волосы во сне олицетворяют стихию огня, буйный...
    Частой закуской на праздничных и обыденных столах являются ароматные маринованные грибочки. Но что делать, если для сбора грибов нет...
    Талисман Денежная Мельница относится к категории амулетов приносящих своему хозяину удачу в делах, и символики, для привлечения богатства...
    Древние заклинания ведьм - опасная магия. Оригиналы таких текстов писались на латыни. Сегодня многие из них утрачены. Ниже ознакомитесь с...