7 какие корни позволяет определить метод хорд. Численные методы решения нелинейных уравнений


Численные методы 1

Решение нелинейных уравнений 1

Постановка задачи 1

Локализация корней 2

Уточнение корней 4

Методы уточнения корней 4

Метод половинного деления 4

Метод хорд 5

Метод Ньютона (метод касательных) 6

Численное интегрирование 7

Постановка задачи 7

Метод прямоугольников 8

Метод трапеций 9

Метод парабол (формула Симпсона) 10

Численные методы

На практике в большинстве случаев найти точное решение возникшей математической задачи не удается. Это происходит потому, что искомое решение обычно не выражается в элементарных или других известных функциях. Поэтому большое значение приобрели численные методы.

Под численными методами подразумеваются методы решения задач, сводящиеся к арифметическим и некоторым логическим действиям над числами. В зависимости от сложности задачи, заданной точности, применяемого метода может потребоваться огромное количество действий, и здесь без быстродействующего компьютера не обойтись.

Решение, полученное численным методом, обычно является приближенным, т. е. содержит некоторую погрешность. Источниками погрешности приближенного решения задачи являются:

    погрешность метода решения;

    погрешности округлений в действиях над числами.

Погрешность метода вызвана тем, что численным методом обычно решается другая, более простая задача, аппроксимирующая (приближающая) исходную задачу. В ряде случаев численный метод представляет собойбесконечный процесс , которыйв пределе приводит к искомому решению. Процесс, прерванный на некотором шаге, дает приближенное решение.

Погрешность округления зависит от количества арифметических действий, выполняемых в процессе решения задачи. Для решения одной и той же задачи могут применяться различные численные методы. Чувствительность к погрешностям округления существенно зависит от выбранного метода.

Решение нелинейных уравнений Постановка задачи

Решение нелинейных уравнений с одним неизвестным является одной из важных математических задач, возникающих в различных разделах физики, химии, биологии и других областях науки и техники.

В общем случае нелинейное уравнение с одним неизвестным можно записать:

f (x ) = 0 ,

где f (x ) – некоторая непрерывная функция аргументаx .

Всякое число x 0 , при которомf (x 0 ) ≡ 0, называется корнем уравненияf (x ) = 0.

Методы решения нелинейных уравнений делятся на прямые (аналитические, точные) иитерационные . Прямые методы позволяют записать решение в виде некоторого соотношения (формулы). При этом значения корней могут быть вычислены по этой формуле за конечное число арифметических операций. Подобные методы развиты для решения тригонометрических, логарифмических, показательных, а также простейших алгебраических уравнений.

Однако подавляющее большинство нелинейных уравнений, встречающихся на практике, не удается решить прямыми методами. Даже для алгебраического уравнения выше четвертой степени не удается получить аналитического решения в виде формулы с конечным числом арифметических действий. Во всех таких случаях приходится обращаться к численным методам, позволяющим получить приближенные значения корней с любой заданной точностью.

При численном подходе задача о решении нелинейных уравнений разбивается на два этапа: локализация (отделение) корней, т.е. нахождение таких отрезков на осиx , в пределах которых содержится один единственный корень, иуточнение корней , т.е. вычисление приближенных значений корней с заданной точностью.

Локализация корней

Для отделения корней уравнения f (x ) = 0 необходимо иметь критерий, позволяющий убедится, что, во-первых, на рассматриваемом отрезке [a ,b ] имеется корень, а, во-вторых, что этот корень единственный на указанном отрезке.

Если функция f (x ) непрерывна на отрезке [a ,b ], а на концах отрезка её значения имеют разные знаки, т. е.

f (a ) f (b ) < 0 ,

то на этом отрезке расположен, по крайней мере, один корень.

Рис 1. Отделение корней. Функция f (x ) не монотонна на отрезке [a ,b ].

Это условие, как видно из рисунка (1), не обеспечивает единственности корня. Достаточным дополнительным условием, обеспечивающем единственность корня на отрезке [a ,b ] является требование монотонности функции на этом отрезке. В качестве признака монотонности функции можно воспользоваться условием постоянства знака первой производнойf ′(x ) .

Таким образом, если на отрезке [ a ,b ] функция непрерывна и монотонна, а ее значения на концах отрезка имеют разные знаки, то на рассматриваемом отрезке существует один и только один корень.

Воспользовавшись этим критерием, можно отделить корни аналитическим способом, находя интервалы монотонности функции.

Отделение корней можно выполнить графически , если удается построить график функцииy =f (x ) . Например, график функции на рисунке (1) показывает, что эта функция на интервале может быть разбита на три интервала монотонности и на этом интервале у нее существуют три корня.

Отделение корней можно также выполнить табличным способом. Допустим, что все интересующие нас корни уравнения (2.1) находятся на отрезке [A, B ]. Выбор этого отрезка (интервала поиска корней) может быть сделан, например, на основе анализа конкретной физической или иной задачи.

Рис. 2. Табличный способ локализации корней.

Будем вычислять значения f (x ) , начиная с точкиx =A , двигаясь вправо с некоторым шагомh (рис. 2). Как только обнаруживается пара соседних значенийf (x ) , имеющих разные знаки, так соответствующие значения аргументаx можно считать границами отрезка, содержащего корень.

Надежность табличного способа отделения корней уравнений зависит как от характера функции f (x ) , так и от выбранной величины шагаh . Действительно, если при достаточно малом значенииh (h <<|B A |) на границах текущего отрезка [x, x +h ] функцияf (x ) принимает значения одного знака, то естественно ожидать, что уравнениеf (x ) = 0 корней на этом отрезке не имеет. Однако, это не всегда так: при несоблюдении условия монотонности функцииf (x ) на отрезке [x, x +h ] могут оказаться корни уравнения (рис. 3а).

Рис 3а Рис 3б

Также несколько корней на отрезке [x, x +h ] могут оказаться и при выполнении условияf (x ) f (x + h ) < 0 (рис. 3б). Предвидя подобные ситуации, следует выбирать достаточно малые значенияh .

Отделяя таким образом корни, мы, по сути, получаем их приближенные значения с точностью до выбранного шага. Так, например, если в качестве приближенного значения корня взять середину отрезка локализации, то абсолютная погрешность этого значения не будет превосходить половины шага поиска (h /2). Уменьшая шаг в окрестности каждого корня, можно, в принципе, повысить точность отделения корней до любого наперед заданного значения. Однако такой способ требует большого объема вычислений. Поэтому при проведении численных экспериментов с варьированием параметров задачи, когда приходится многократно осуществлять поиск корней, подобный метод не годится для уточнения корней и используется только для отделения (локализации) корней, т.е. определения начальных приближений к ним. Уточнение корней проводится с помощью других, более экономичных методов.

Наименование параметра Значение
Тема статьи: Метод хорд.
Рубрика (тематическая категория) Математика

Метод хорд - один из распространенных итерационных методов. Его еще называют методом линœейного интерполирования, методом пропорциональных частей.

Идея метода хорд в том, что на достаточно малом отрезке дуга кривой у =f (x) заменяется хордой и абсцисса точки пересечения хорды с осью Ox является приближенным значением корня.

Рисунок 2 – Геометрическая интерпретация метода Ньютона.

Пусть для определœенности f" (х)> 0, f"" (x) >0, f (а) <0, f (b)> 0 (рис. 3, а). Возьмем за начальное приближение искомого корня х* значения х 0 =а. Через точки а 0 и В проведем хорду и за первое приближение корня х* возьмем абсциссу x 1 точки пересечения хорды с осью ОХ. Теперь приближенное значение х 1 корня можно уточнить если применить метод хорд на отрезке [х 1 ; b ]. Абсцисса х 2 точки пересечения хордыА 1 В будет другим приближением корня. Продолжая данный процесс далее, получим последовательность х 0 , х 1 , х 2 ,..., х k , ... приближенных значений корня х* данного уравнения.

Таким образом метод хорд можно записать так:

, k=0, 1.2, …, (8)

В общем случае неподвижным будет тот конец отрезка изолированного корня, в которой знак функции f(х) совпадает со знаком второй производной, а за начальное приближение x 0 можно взять точку отрезка [а; b ], в которой f(x 0)×f"’(x 0) < 0.

К примеру, когда f (a) >0, f (b) <0, f"(х)< 0, f"(х)< 0 (рис. .3, б) конец b отрезка [а; b ] является неподвижным.

В случае если f (а)>0, f (b)< 0, f" (х)< 0, f"(x) >0 (рис.3, в), или f (а) <0, f (b) >0, f’ (х) >0, f"’ (x) <0 (рис. 3, г), точка а является неподвижным концом отрезка [а; b ].

Достаточные условия сходимости метода хорд дает такая теорема.

Рисунок 3. – Геометрическая интерпретация метода хорд

Теорема. Пусть на отрезке [а; b ] функция f (х) непрерывна вместе со своими производными второго порядка включительно, причем f(a)×f(b)<0, а производные f" (x) и f" (х) сохраняют свои знаки на [а; b ], тогда существует такая окружность корня х* уравнения f (x) =0, что для любого начального приближения х 0 этой окружности последовательность {х k }, вычисленная по формуле (8), сходится к корню х*.

Метод хорд. - понятие и виды. Классификация и особенности категории "Метод хорд." 2017, 2018.

  • - Метод хорд

    Пусть 1) функция y=F(x) определена и непрерывна на отрезке . 2) F(a)F(b)<0 Требуется найти корень на отрезке с точностью &... .


  • - МЕТОД ХОРД

    При дифференцировании этим методом отмечают ряд точек на вычерченной кривой графика функции, которые соединяют хордами, т.е. заменяют заданную кривую ломаной линией (Рис.2). Принимают следующее допущение: угол наклона касательных в точках, расположенных посередине... .


  • - Метод хорд

    В некоторых случаях несколько большей скоростью сходимости обладает метод хорд, у которого на втором этапе при выборе очередного приближения внутри отрезка, содержащего корень, учитывается величина невязки на концах отрезка: точка выбирается ближе к тому концу, где... .


  • - Метод хорд.

    Идея метода проиллюстрирована рисунком. Задается интервал , на котором f(x0)f(x1) &... .


  • - Метод хорд

    В данном методе в качестве приближения выбирается не середина отрезка, а точка пересечения хорды с осью абсцисс. Уравнение хорды АВ, соединяющей концы отрезка: (1) Точка пересечения с осью абсцисс имеет координаты, подставим в (1) и найдем (2). Сравниваем знаки и... .


  • - Комбинированный метод хорд и касательных

    Если и - приближенные значения корня по недостатку и избытку. 1. Если на, то, при этом. 2. Если на, то, при этом. Пример. Отделить корни аналитически и уточнить их комбинированным методом хорд и касательных с точностью до 0,001. , следовательно, для вычислений...

  • Метод итераций

    Метод простых итераций для уравнения f (x ) = 0 заключается в следующем:

    1) Исходное уравнение преобразуют к виду, удобному для итераций:

    x = φ (х ). (2.2)

    2) Выбирают начальное приближение х 0 и вычисляют последующие приближения по итерационной формуле
    x k = φ (х k -1), k =1,2, ... (2.3)

    Если существует предел итерационной последовательности, он является корнем уравнения f (x ) = 0, т. е. f (ξ ) =0.

    y = φ (х )

    a x 0 x 1 x 2 ξ b

    Рис. 2. Сходящийся процесс итераций

    На рис. 2 показан процесс получения очередного приближения по методу итераций. Последовательность приближений сходится к корню ξ .

    Теоретические основы для применения метода итера­ций дает следующая теорема.

    Теорема 2.3 . Пусть выполняются условия:

    1) корень уравнения х = φ(х) принадлежит отрезку [а , b ];

    2) все значения функции φ (х ) принадлежат отрезку [а , b ],т. е. а φ (х )≤ b ;

    3) существует такое положительное число q < 1, что производная φ "(x ) во всех точках отрезка [а , b ] удовлет­воряет неравенству |φ "(x ) | ≤ q .

    1) итерационная последовательность х п = φ (х п- 1)(п = 1, 2, 3, ...) сходится при любом x 0 Î [а , b ];

    2) предел итерационной последовательности является корнем уравнения

    х = φ (x ), т. е. если x k = ξ, то ξ= φ (ξ);

    3) справедливо неравенство, характеризующее ско­рость сходимости итерационной последовательности

    | ξ-x k | ≤ (b-a )×q k . (2.4)

    Очевидно что, эта теорема ставит, довольно, жесткие условия, которые необходимо проверить перед примене­нием метода итераций. Если производная функции φ (x ) по модулю больше единицы, то процесс итераций расхо­дится (рис. 3).

    y = φ (x ) y = x

    Рис. 3. Расходящийся процесс итераций

    В качестве условия сходимости итерационных методов чисто используется неравенство

    |x k - x k - 1 | ε . (2.5)

    Метод хорд заключается в замене кривой у = f (x ) отрезком прямой, проходящей через точки (а , f (a )) и (b , f (b )) рис. 4). Абсцисса точки пересечения прямой с осью ОХ принимается за очередное приближение.

    Чтобы получить расчетную формулу метода хорд, за­пишем уравнение прямой, проходящей через точки (a , f (a )) и (b , f (b )) и, приравнивая у к нулю, найдем х :

    Þ

    Алгоритм метода хорд :

    1) пусть k = 0;

    2) вычислим следующий номер итерации: k = k + 1.

    Найдем очередное k -e приближение по формуле:

    x k = a - f (a )(b - a )/(f (b ) - f (a )).

    Вычислим f (x k );

    3) если f (x k )= 0 (корень найден), то переходим к п. 5.

    Если f (x k ) ×f (b )>0, то b = x k , иначе a = x k ;

    4) если |x k – x k -1 | > ε , то переходим к п. 2;

    5) выводим значение корня x k ;

    Замечание . Действия третьего пункта аналогичны действи­ям метода половинного деления. Однако в методе хорд на каж­дом шаге может сдвигаться один и тот же конец отрезка (пра­вый или левый), если график функции в окрестности корня выпуклый вверх (рис. 4, а ) или вогнутый вниз (рис. 4, б ).Поэтому в критерии сходимости используется разность сосед­них приближений.

    Рис. 4. Метод хорд

    4. Метод Ньютона (касательных )

    Пусть найдено приближенное значение корня уравнения f (x )= 0, и обозначим его х п .Расчетная формула метода Ньютона для определения очередного приближения x n +1 может быть получена двумя способами.

    Первый способ выражает геометрический смысл метода Ньютона и состоит в том, что вместо точки пересечения графика функции у = f (x )с осью Оx ищем точку пересечения с осью Оx касательной, проведенной к графику функции в точке (x n , f (x n )),как показано на рис. 5. уравнение касательной имеет вид у - f (x n )= f " (x n )(x - x n ).

    Рис. 5. Метод Ньютона (касательных)

    В точке пересечения касательной с осью Оx переменная у = 0. Приравнивая у к нулю, выразим х и получим формулу метода касательных :

    (2.6)

    Второй способ: разложим функцию f (x )в ряд Тейлора в окрестности точки х = х n :

    Ограничимся линейными слагаемыми относительно (х - х п ),приравняем к нулю f (x ) и, выразив из получен­ного уравнения неизвестное х ,обозначив его через х n +1 получим формулу (2.6).

    Приведем достаточные условия сходимости метода Ньютона.

    Теорема 2.4 . Пусть на отрезке [а , b ]выполняются ус­ловия:

    1) функция f (x )и ее производные f " (х f "" (x )непре­рывны;

    2) производные f " (x)и f ""(x )отличны от нуля и сохра­няют определенные постоянные знаки;

    3) f (a )× f (b ) < 0 (функция f (x )меняет знак на отрезке).
    Тогда существует отрезок [α , β ], содержащий искомый корень уравнения f (x ) = 0, на котором итерационная пос­ледовательность (2.6) сходится. Если в качестве нулевого приближения х 0 выбрать ту граничную точку [α , β ], в ко­торой знак функции совпадает со знаком второй произ­водной,

    т.е. f (x 0)× f" (x 0)>0, то итерационная последо­вательность сходится монотонно

    Замечание . Отметим, что метод хорд как раз идет с противо­положной стороны, и оба этих метода могут друг друга допол­нять. Возможен и комбинированный метод хорд-касательных.

    5. Метод секущих

    Метод секущих может быть получен из метода Ньютона при замене производной приближенным выражени­ем – разностной формулой:

    , ,

    . (2.7)

    В формуле (2.7) используются два предыдущих при­ближения х п и x n - 1 .Поэтому при заданном начальном приближении х 0 необходимо вычислить следующее приближение x 1 , например, методом Ньютона с приближенной заменой производной по формуле

    ,

    Алгоритм метода секущих :

    1) заданы начальное значение х 0 и погрешность ε . Вычислим

    ;

    2) для п = 1, 2, ... пока выполняется условие |x n x n -1 | > ε , вычисляем х п+ 1 по формуле (2.7).

    Выбор редакции
    Незнакомец, советуем тебе читать сказку "Каша из топора" самому и своим деткам, это замечательное произведение созданное нашими предками....

    У пословиц и поговорок может быть большое количество значений. А раз так, то они располагают к исследованиям большим и малым. Наше -...

    © Зощенко М. М., наследники, 2009© Андреев А. С., иллюстрации, 2011© ООО «Издательство АСТ», 2014* * *Смешные рассказыПоказательный...

    Флавий Феодосий II Младший (тж. Малый, Юнейший; 10 апр. 401 г. - † 28 июля 450 г.) - император Восточной Римской империи (Византии) в...
    В тревожный и непростой XII век Грузией правила царица Тамара . Царицей эту великую женщину называем мы, русскоговорящие жители планеты....
    Житие сщмч. Петра (Зверева), архиепископа ВоронежскогоСвященномученик Петр, архиепископ Воронежский родился 18 февраля 1878 года в Москве...
    АПОСТОЛ ИУДА ИСКАРИОТ Апостол Иуда ИскариотСамая трагическая и незаслуженно оскорбленная фигура из окружения Иисуса. Иуда изображён в...
    Когнитивная психотерапия в варианте Бека - это структурированное обучение, эксперимент, тренировки в ментальном и поведенческом планах,...
    Мир сновидений настолько многогранен, что никогда не знаешь, что же появится в следующем сне. Порой сны бывают устрашающие, приводящие к...