Для всех и обо всем.


Лента Мебиуса (Möbius strip) - трехмерная поверхность, имеющая только одну сторону и одну границу, обладающая математическим свойством неориентируемости. Она была открыта независимо одновременно двумя математиками из Германии Августом Фердинандом Мёбиусом (August Ferdinand Möbius) и Иоганном Бенедиктом Листингом (Johann Benedict Listing) в 1858 году.

Модель ленты Мебиуса может быть легко создана из полоски бумаги, повернув один из концов полоски вполоборота и соединив его с другим концом в замкнутую фигуру. Если начать рисовать карандашом линию на поверхности ленты, то линия уйдет вглубь фигуры и пройдет под начальной точкой линии, как уйдя на "другую сторону" ленты. Если продолжать линию, то она вернется в начальную точку. При этом длина нарисованной линии будет вдвое больше длины полоски бумаги. Этот пример показывает, что у ленты Мебиуса лишь одна сторона и одна граница.

В Евклидовом пространстве, фактически, существует два типа ленты Мебиуса, развернутой вполоборота: одна - развернутая по часовой стрелке, другая - против часовой стрелки.

Геометрия и математика

Лента Мебиуса может быть представленная параметрической системой уравнений:

где и . Этими уравнениями описывается лента Мебиуса шириной 1, лежащая в плоскости x -y; внутренний радиус окружности которой равен 1, центр внутренней окружности находится в начале координат (0,0,0). Параметр u движется вдоль ленты, а параметр v - от одной границы к другой.

Иным способом ленту можно представить выражением в полярных координатах:

Топологически, лента Мебиуса может быть определена как квадрат x , верх которого соединен с низом в соотношении (x ,0) ~ (1-x ,1) for 0 ≤ x ≤ 1, как показано на рисунке справа.

Близкие объекты

Тесно связанным с лентой Мебиуса является загадочный объект - бутылка Кляйна . Бутылка Кляйна может быть создана склеиванием двух лент Мебиуса друг с другом вдоль их границ. Эта операция не может быть произведена в трехмерном пространстве без создания пересечений внутри фигуры.

Одна из базовых невозможных фигур невозможный треугольник может быть представлен как лента Мебиуса, если сгладить некоторое его грани. При этом получится лента Мебиуса, описывающая три витка.

Искусство


Логотип The Power Architecture

Также лента Мебиуса часто используется в изображениях различных логотипах и торговых марках. Самых яркий пример - международный символ повторного использования.

Приложение. Картины с лентами Мебиуса

Картина ниже Пола Билацика (Paul Bielaczyc) называется Как говорит автор, эта картина - объединение различных аспектов его жизни. Кельтские узлы окружают его в его работе, картины М.К. Эшера всегда служат источником вдохновения, а лента Мебиуса имеет отношение к предмету, изучаемому художником.

Году. Модель ленты Мёбиуса может легко быть сделана. Для этого надо взять достаточно вытянутую бумажную полоску и соединить концы полоски, предварительно перевернув один из них. В евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые.

Лист Мёбиуса иногда называют прародителем символа бесконечности , так как находясь на поверхности ленты Мёбиуса, можно было бы идти по ней вечно. Это не соответствует действительности, так как символ использовался для обозначения бесконечности в течение двух столетий до открытия ленты Мёбиуса. (см. символ бесконечности).

Свойства

Лента Мёбиуса обладает любопытными свойствами. Если попробовать разрезать ленту вдоль по линии, равноудалённой от краёв, вместо двух лент Мёбиуса получится одна длинная двухсторонняя (вдвое больше закрученная, чем лента Мёбиуса) лента, которую фокусники называют «афганская лента». Если теперь эту ленту разрезать вдоль посередине, получаются две ленты намотаные друг на друга. Если же разрезать ленту Мёбиуса, отступая от края приблизительно на треть её ширины, то получаются две ленты, одна - более тонкая лента Мёбиуса, другая - длинная лента с двумя полуоборотами (Афганская лента). Другие интересные комбинации лент могут быть получены из лент Мёбиуса с двумя или более полуоборотами в них. Например если разрезать ленту с тремя полуоборотами, то получится лента, завитая в узел трилистника . Разрез ленты Мёбиуса с дополнительными оборотами даёт неожиданные фигуры, названные парадромными кольцами.

Геометрия и топология

Параметрическое описание листа Мёбиуса.

Чтобы превратить квадрат в лист Мёбиуса, соедините края, помеченные так, чтобы направления стрелок совпали.

Одним из способов представления листа Мёбиуса как подмножества является параметризация:

где и . Эти формулы задают ленту Мёбиуса ширины 1, чей центральный круг имеет радиус 1, лежит в плоскости x - y с центром в . Параметр u пробегает вдоль ленты, в то время как v задает расстояние от края.

Лист Мёбиуса - это также пространство нетривиального расслоения над окружностью с слоем отрезок.

Подобные объекты

Близким «странным» геометрическим объектом является бутылка Клейна . Бутылка Клейна может быть получена путём склеивания двух лент Мёбиуса по краям. В обычном трёхмерном евклидовом пространстве сделать это, не создавая самопересечения, невозможно.

Другое похожее множество - сфера с плёнкой. Если проколоть отверстие в сфере с плёнкой, тогда то что останется будет листом Мёбиуса. С другой стороны, если приклеить диск к ленте Мёбиуса, совмещая их границы, то результатом будет сфера с плёнкой. Чтобы визуализировать это, полезно деформировать ленту Мёбиуса так, чтобы её граница стала обычным кругом. Такую фигуру называют «пересечённая крышка» (пересечённая крышка может также означать ту же фигуру с приклееным диском, то есть погружение проективной плоскости в ).

Существует распространённое заблуждение, что пересечённая крышка не может быть сформирована в трёх измерениях без самопересекающейся поверхности. На самом деле возможно поместить ленту Мёбиуса в с границей, являющейся идеальным кругом. Идея состоит в следующем - пусть C будет единичным кругом в плоскости x y в . Соединив антиподные точки на C , то есть, точки под углами θ и θ + π дугой круга, получим, что для θ между 0 и π / 2 дуги лежат выше плоскости x y , а для других θ ниже (причём в двух местах дуги лежат в плоскости x y ).

Можно заметить, что если диск приклеивается к граничной окружности, то самопересечение получающейся сфера сплёнкой неизбежно в трёхмерном пространстве. В терминах задания сторон квадрата, как было показано выше, сфера с плёнкой получается склеиванием двух оставшихся сторон с сохранением ориентации.

Открытые проблемы

ОТВЕТ : Таких формул существует бесконечно много, см., напр., .

Сложнее найти форму, которая при этом минимизирует упругую энергию изгиба. Эта задача, впервые поставленная Садовским (M. Sadowsky ) в 1930 году, была недавно решена, см. . Однако решение не описывается алгебраической формулой, и маловероятно, что такая формула вообще существует. Чтобы найти пространственную равновесную форму бумажной ленты Мёбиуса, необходимо решить краевую задачу для системы дифференциально-алгебраических уравнений.

Искусство и технология

Международный символ переработки представляет собой Лист Мёбиуса.

Лист Мёбиуса служил вдохновением для скульптур и для графического искусства. Эшер был одним из художников, кто особенно любил его и посвятил несколько своих литографий этому математическому объекту. Одна из известных - лист Мёбиуса II , показывает муравьёв, ползающих по поверхности ленты Мёбиуса.

Лист Мёбиуса также постоянно встречается в научной фантастике , например в рассказе Артура Кларка «Стена Темноты» . Иногда научно-фантастические рассказы (вслед за физиками-теоретиками) предполагают, что наша Вселенная может быть некоторым обобщенным листом Мёбиуса. Также кольцо Мёбиуса постоянно упоминается в произведениях уральского писателя Владислава Крапивина, цикл «В глубине Великого Кристалла» (напр. «Застава на Якорном Поле. Повесть»). В рассказе «Лист Мёбиуса» автора А. Дж. Дейча, бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда.

Существуют технические применения ленты Мёбиуса. Полоса ленточного конвейера выполняется в виде ленты Мёбиуса, что позволяет ему работать дольше, потому что вся поверхность ленты изнашивается равномерно. Также в системах записи на непрерывную плёнку применяются ленты Мёбиуса (чтобы удвоить время записи). Во многих матричных принтерах красящая лента также имеет вид листа Мёбиуса для увеличения её ресурса.

См. также

Примечания

Wikimedia Foundation . 2010 .

  • Ленобласть
  • Лента Мёбиуса

Смотреть что такое "Лента Мебиуса" в других словарях:

    Лента мебиуса - Лента Мёбиуса Лист Мёбиуса (лента Мёбиуса) топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве R3. Попасть из одной точки этой поверхности в любую другую можно, не… … Википедия

    ЛЕНТА МЕБИУСА - Группа была образована 29 марта 1996 г. Николаем Марконовым (вокал, гитара, тексты) экс Аниматоры. В группу приходят Алексей Шубенко (бас), (гр. Мотохулиганы), Валерий Быстрое (соло), (гр. Буш билдинг), Олег Буробин (ударные), (гр. Старик… … Русский рок. Малая энциклопедия

    Лента Мёбиуса - Лист Мёбиуса (лента Мёбиуса, петля Мёбиуса) топологический объект, простейшая неориентируемая поверхность с краем, однос … Википедия

    Лента мёбиуса - Лист Мёбиуса (лента Мёбиуса) топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве R3. Попасть из одной точки этой поверхности в любую другую можно, не пересекая края.… … Википедия

Александр Пославский

Артемий Бабий

Это небольшой очерк о малоизвестных сюрпризах, которые встречаются при изучении геометрии ленты Мёбиуса.

В литературе встречается несколько названий: проективная плоскость, односторонняя поверхность, лента Мёбиуса, петля Мёбиуса, кольцо Мёбиуса. По укоренившейся у меня привычке в дальнейшем я буду называть предмет нашего изучения кольцом Мёбиуса.

Коротко об общеизвестных сюрпризах кольца Мёбиуса . Это необходимо для понимания того, о чем будет рассказано далее.

  • Если разрезать кольцо Мёбиуса вдоль по средней линии, то в итоге получится кольцо с двойным полуоборотом. Такое кольцо называют *Афганской лентой* и оно является уже двусхторонней поверхностью с двумя краями (кромками).
  • Если разрезать кольцо Мёбиуса вдоль края, отступив на 1/3 его ширины, то в итоге получатся два кольца разных размеров: меньшее - кольцо Мёбиуса ( односторонняя поверхность) и большее - *Афганская лента * (двусторонняя поверхность). Эти кольца сцеплены друг с другом.

А сейчас о новых сюрпризах. Они малоизвестны для широкой публики. А самые любознательные читатели могут повторить нижеописанные опыты. Автор очерка не являеется профессиональным математиком-топологом, всё придумал самостоятельно, без посторонней помощи. Поэтому результаты опытов и идеи, высказанные в этом очерке, предлагаются для обсуждения с его автором.

Сюрприз №1

Сначала я попробовал склеить кольцо Мёбиуса не из одной, а из двух полосок бумаги, предварительно уложив их в стопку (Фото 1). Получилось нечто похожее на настоящее кольцо Мёбиуса (Фото2):

Почему “нечто похожее”? Потому что, когда я растянул это кольцо, оказалось, что в результате склейки получилась “ (Фото 3).

И в чем тут сюрприз? А в том, что при растягивании исходного кольца, не нарушалась его целостность. Это значит, что достаточно просто складывается в обратном порядке в исходное кольцо (псевдокольцо) Мёбиуса (Фото 4).

Сейчас время вспомнить, что “афганская лента” получается при разрезании настоящего кольца Мёбиуса по средней линии. Так вот, полученная при разрезании, так же просто складывается в псевдокольцо Мёбиуса . Т.е., разрезав кольцо Мёбиуса (далее - кМ ) по средней линии и получив “афганскую ленту” (а.л.” ) , можно уже полученную а.л. собрать в псевдокольцо Мёбиуса (далее - ПкМ ). Вы можете просто склеить “а.л.” и сложить ее в ПкМ . Проверено на практике.

Сюрприз №2

Этот сюрприз является продолжением сюрприза 1 . Я склеил уже три бумажные полоски по форме кМ , предварительно уложив их в стопку (Фото 5 и 6).

Получился некий “бутерброд” в форме кМ (Фото 7) . Если растянуть этот “бутерброд” , то он разложится на два кольца: меньшее - это кМ и большее - это “а.л.” , сцепленные друг с другом (Фото 8).

Но такой же результат получается при разрезании кМ по 1 / 3 его ширины! Как и в первом случае, эти два кольца возможно собрать в первоначальное состояние “бутерброда” . Сначала “а.л.” укладывается в ПкМ (Фото 9) , а затем кМ помещается в середину ПкМ (Фото 10). Проверено на практике.

Удивительно, но, разрезав уже “бутерброд” по 1 / 3 ширины, можно собрать новый, более сложный “бутерброд” . Теоретически такое деление “бутербродов” и их собирание можно продолжать... ну очень много раз. В итоге получится многослойный “бутерброд” , состоящий из многих слоёв “афганских лент” и одного кольца Мёбиус а , расположенного в середине “бутерброда” .

Для более образного представления многослойного (бутербродного) строения псевдокольца Мёбиуса предлагаю два рисунка из серии “математики шутят”:

На примере “бутерброда” (Фото 7,10) можно легко и зримо понять ещё одно свойство односторонней поверхности (проективной плоскости): нельзя создать две , параллельные друг к другу, однносторонние поверхности (во всяком случае в нашем трёхмерном, эвклидовом, пространстве). Одна из них обязательно получится двухсторонней.

Здесь я сделаю небольшое отступление. В Интернете я встретил описание эксперимента с кольцом Мёбиуса . Выглядел он так: на полимерную плёнку в форме кМ наносился металлический слой. Над полученным образцом проводились различные действия, считая что проводятся опыты над кМ . Строго говоря, опыты проводились над вышеописанным “бутербродом” , где рабочий металлический слой являлся “афганской лентой” , а кольцом Мёбиуса была несущая полимерная плёнка.

Возвращаясь к теме, хочу заметить, что я тоже хотел поэкспериментировать с кМ . Но меня не устраивала несовершенная форма кМ , полученная из прямоугольных полосок. Эта “прямоугольная” конструкция имеет, как минимум, три зоны деформации, которые четко проявляются при уплощении кМ . Поэтому я посчитал, что кМ , собранные на основе S-образных полосок, более технологичны в работе(Фото 11 и 12).

Чтобы получить кМ изS- образной полоски достаточно состыковать концы полоски и склеить их. Причем, в зависимости от того в какую сторону вы будете перегибать полоску, будет получаться лево- или правозакрученный вариант кМ . Так же просто получается и вышеописанный “бутерброд” : делается стопка из 3 S -образных полосок, сводятся их концы и поочередно склеиваются.

Опыты с разрезанием кольца Мёбиуса и собиранием “бутербродов” с этим вариантом более наглядны и сборка получается очень легко.

“Бутерброд” , полученный из трех полосок может послужить моделью для создания конденсатора в форме кМ . Только надо понимать, что в начале необходимо создать кМ из металлической фольги (внутренняя пластина-электрод), а уже на него наносить слои диэлектрика и металлической плёнки (внешняя пластина-электрод). Хотя здесь возможны варианты не с кМ , а с ПкМ и это потребует несколько иного подхода.

Я не знаю, будет ли такая конструкция конденсатора иметь преимущества перед традиционной, но считаю, что она будет интересна для тех, кто занимается торсионными полями. Почему? Это уже тема для дискуссии с автором очерка.

Сюрприз №3

Продолжим. Несмотря на полученный результат, у меня осталась неудовлетворенность несовершенством формы полученного таким способом кМ . Размышляя над этой проблемой, я вспомнил, что кМ относится к торовым поверхностям. Так как у меня с пространственным воображением напряг и мне необходимо всё увидеть глазами и потрогать руками, то я взял кольцо Мёбиуса и оклеил его бумажными кольцами. Получилась вот такая конструкция (Фото 13).

И где здесь обещанный сюрприз? Рассматривая полученный “тор” , я открыл (заостряю - для себя; возможно всё выше- и нижеописанное давно известно читателям этого опуса), что кольцо Мёбиуса не делит внутренний объём тора на две изолированные друг от друга полости. Другими словами: из любой точки, находящейся внутри тора со встроенным в него кМ , можно попасть в любую другую точку внутри, не пересекая плоскость кМ и поверхность тора.

Для наглядности представим себе тор в виде спасательного резинового круга внутри которого находится перегородка в виде кМ . Давление воздуха внутри круга с перегородкой в форме кМ будет распределятся равномерно по всему объёму независимо от того, где будет располагаться ниппель. Кстати, фото 13 очень наглядно моделирует форму магнитного поля вокруг продольной катушки Мёбиуса .

Теоретически принцип построения идеального торового кольца Мёби уса достаточно прост, но практическое исполнение модели торового кМ сопряжено с определёнными техническими трудностями.

Для практического изготовления торовых кМ более всего подходит распечатка на 3-D принтере.

Итак, сюрпризы продолжаются

Сейчас наступило время поговорить о таком замечательном геометрическом теле как ТОР.

Как образуется открытый ТОР ? Правильно, открытый ТОР образуется при вращении торообразующей окружности вокруг оси, находящейся вне этой окружности и имеет вот такой вид (Фото14).

Еще различают пиковый ТОР . Это когда большая ось вращения является касательной к торообразующей окружности. По-простому - бублик без дырки. А также закрытый (осевой) ТОР , когда ось вращения пересекает торообразующую окружность. Хороший пример - округлое яблоко.

Для того, чтобы получить кМ в ТОР е, обозначим в торообразующем круге диаметр (два радиус-вектора). А сейчас заставим торообразующий круг вращаться не только вокруг внешней оси, а одновременно и вокруг внутренней оси ТОР а. За полный оборот вокруг внешней оси круг должен одновременно повернуться на полоборота вокруг внутренней оси. Тогда диаметр (два радиус-вектора) опишет плоскость в виде кМ (Фото 15) .

Но это кМ получено в воображаемом опыте. А как же получить его в реале, не имея в наличии 3-D принтер? Вы можете придумать свой способ, отличный от моего. Я же поступил следующим образом. На поверхности открытого ТОР а (из детской пирамидки) нарисовал траекторию движения радиус-векторов (Фото 16) . Затем взял латунную проволоку, аккуратно обогнул её вокруг ТОР а по этой траектории и получил две половинки края (кромки) торового кМ (Фото 17).

Затем соединил их с помощью двух трубочек, а пространство между ветками полученной петли заполнил отрезками изоленты (Фото 18 и 19).

Кольцо Мёбиуса в ТОР е можно получить и с помощью одного радиус-вектора. При этом он должен одновременно сделать два оборота вокруг внешней оси и полный оборот вокруг внутренней оси. И здесь становятся понятными две вещи: первое - кМ имеет ось симметрии (или среднюю линию) и второе - почему, если разрезать кМ по средней линии, получается кольцо с двойным полуоборотом (*Афг aнская лента* ). Просто представьте себе, что нарисует единичный радиус-вектор при первом обороте вокруг внешней оси, и что при втором.

Внимательный читатель, склеивая кМ и затем разрезая его по средней линии, мог заметить что при этом ножницы совершают один оборот. Если же резать кМ по 1 / 3 ширины, то ножницы совершают уже два оборота.

КМ сохраняет свойства односторонней поверхности и при большем количестве полуоборотов. Главное условие - количество полуоборотов должно быть нечетным.

Такой лист Мёбиуса или кольцо Мёбиуса , как кому нравится, я назвал двухвекторным. Зачем? А затем, что такое кольцо строится двумя радиус-векторами. Ну и что? А то, что...

Сюрприз №4

В торе можна создавать трёх-, четырёх-, ...,N -векторные кольца Мёбиуса . Взгляните на Фото 20. Оно иллюстрирует принцип создания трехвекторного кольца Мёбиуса.

В торообразующей окружности показаны три радиус-вектора - А, В, С . Вращая эту окружность вокруг внешней оси и одновременно закручивая её вокруг внутренней так, чтобы при завершении оборота вектор А состыковался с вектором В (соотвтственно вектор В к С , а С к А ), радиус-векторы опишут (создадут) одностороннюю поверхность в виде трехвекторного (трёхлепесткового) кольца Мёбиуса .

Это универсальный метод получения N-векторных односторонних поверхностей и они будут обладать всеми свойствами обычного кМ.

При таком подходе к построению торовых кМ особое значение приобретает средняя линия (по другому - линия сопряжения). В этом случае линия сопряжения совпадает с внутренней осью тора. Если, к примеру, 3-хвекторный кМ расшить по линии сопряжения, то мы получим вариант “афганской ленты” в тройной петле:

Трёхвекторное кМ , созданное по даной схеме, можно обозначить в виде дроби 1 / 3 , где в знаменателе указывается число векторов, а сама дробь указывает на какой угол закручиваестся каждый вектор при полном обороте.

Я назвал эту дробь индексом км . Например, если я буду говорить о кМ с индексом км = 1 / 4, то это означает, что речь идёт о четырёхвекторном кМ с закрутом в 1 / 4 оборота (умножив на 360 0 , получим результат в градусах) или в 90 0 . Индекс км ,выраженный в градусах - это базовый угол закрута. При этом надо помнить, что индекс км не может принимать значение целого числа .

Приняв во внимание, что кМ может закручиваться по левому или правому винту, я обозначил левый винт знаком ”-“ , а правый винт - знаком “+” . Тогда полная запись индекса км будет выглядеть на примере так: индекс км = + 1 / 4 . Значит речь будет идти о четырехвекторном кМ с закрутом в 1 / 4 оборота(базовый угол закрута - 90 0 ) и правым винтом.

Индекс км становится очень информативным показателем, помогающим достаточно быстро разобраться в огромном семействе многовекторных кМ и их различных сочетаниях.

Я не ставил перед собой задачу описывать и систематизировать всё многообразие семейства торовых кМ и их взаимосочетаний. Остановлюсь только на нескольких осбенностях, которые необходимо учитывать при конструировании девайсов с геометрией кМ .

1. Если индекс км имеет общее кратное для числителя и знаменателя, то при моделировании получается система из нескольких взаимопересекающихся кМ (от 2-х и более). Рассмотрим примеры 6 -тивекторного построения.

Индекс км =+ 2 / 6 , где общее кратное для данной дроби равно 2 . Это означает, что при моделировании получится система из 2-х трехвекторных кМ с базовым углом закрута в 120 0 :

Индекс км =+ 3 / 6 , где общее кратное равно 3 . При моделировании получается система из 3-х двухвекторных кМ с базовым углом в 180 0 :

2. Если индекс км имеет вид 1 / 4 , 1 / 6 , 1 / 8 … 1 / 2 N или 3 / 4 , 5 / 4 , 5 / 6 , 7 / 6 … 2 N±1 / 2N (где N - любое натуральное число, начиная с числа 2 ), то при моделировании получается самопересекающееся кольцо Мёбиуса - от однократного самопересечения до многократного. При этом односторонность такого кМ сохраняется в любом случае. Приведу несколько примеров, подтверждающих данное утверждение:

    Методы исследования: анализ литературы по данной теме; сравнение; обобщение; моделирование (метод моделирования позволил мне получить информацию о различных свойствах изучаемого объекта на основе опытов с его материальными моделями).

    Таинственный и знаменитый лист Мебиуса (иногда говорят: "лента Мёбиуса") придумал Август Фердинанд Мёбиус (1790-1868), ученик "короля математиков" Гаусса, немецкий геометр Лейпцигского университета. Первоначально Мёбиус был астрономом. Он ввел аналитические методы исследования, установил понятие проективного преобразования и существование односторонних поверхностей. В возрасте 68 лет ему удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей, одна из которых - лист Мёбиуса.

    Как -то раз в доме на пороге комнаты появилась любимая жена. Правда, она была не в хорошем расположении духа. Правильнее сказать, она была разгневана, что для мирного дома Мебиусов было почти так же невероятно, как три раза в год увидеть парад планет, и категорически требовала немедленно уволить служанку, которая настолько бездарна, что даже не способна правильно сшить ленту.

    Лист Мёбиуса - это топологический объект, простейшая односторонняя поверхность с краем. Сама топология началась именно с листа Мёбиуса.

    Топология (от греч. το?πος — место) — часть геометрии, изучающая в самом общем виде явление непрерывности, а также свойства обобщенных геометрических объектов. Топология является одним из самых «молодых» разделов современной геометрии, в котором изучаются свойства таких фигур, которые не меняются, если их гнуть, растягивать, сжимать, но не склеивать и не рвать, т. е не изменяются при деформациях. Примером топологических объектов являются: буквы И и Н, тонкие длинные воздушные шарики.

    Изготовление ленты Мёбиуса.

    Возьмем бумажную ленту АВСD, разделенную по ширине пополам пунктирной линией. Прикладываем ее концы АВ и СD друг к другу и склеиваем так, чтобы точка А совпала с точкой C, а точка B с точкой D. Получилось знаменитое в математике бумажное кольцо, которое получило особое название - "Лента Мёбиуса".

    Опыты с лентой Мёбиуса

    1 опыт.

    Результат: линия проходит непрерывно по двум сторонам, заканчиваясь в начальной поставленной точке.

    2 опыт.

    Результат: лист Мёбиуса закрасился полностью, а вот у кольца одна сторона закрашена, а другая - нет.

    3 опыт.

    Результат: на обычном кольце паук и муха никогда не встретятся, не пересекая края. На листе Мёбиуса паук и муха встретятся не пересекая края в любом случае.

    4 опыт:

    Результат: получилось два кольца, причем длина окружности каждого будет такой же, как длина окружности первоначально взятого. У листа Мёбиуса получилось одно большое кольцо перекрученное в два раза (в виде восьмерки).

    5 опыт:

    Результат: получилось 2 кольца одно уже, другое шире. В листе Мёбиуса получилось два сцепленных друг с другом кольца, одно маленькое - другое большое.

    Лист Мёбиуса служил вдохновением для скульптур и для графического искусства. Одним из художников, кто особенно любил его и посвятил несколько своих литографий этому математическому объекту, был Морис Корнелис Эшер. Одна из известных - муравьи, ползающие по поверхности Ленты Мёбиуса. (см. Приложение 2)

Просмотр содержимого документа
«КОНКУРС ТВОРЧЕСКИХ РАБОТ ШКОЛЬНИКОВ»

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«НОВОЦУРУХАЙТУЙСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА»

ПРИАРГУНСКОГО РАЙОНА

ЗАБАЙКАЛЬСКОГО КРАЯ

Исследовательская работа на тему:

«Лента Мёбиуса»

Выполнила: ученица 8 «А» класса

МОУ Новоцурухайтуйской СОШ

Симонова Анна Сергеевна

Руководитель: учитель математики

и информатики

Коктышева Юлия Георгиевна

Новоцурухайтуй, 2012 г.

Введение ………………………………………………………………………

    История создания листа Мёбиуса…………………………………………

    Изучение свойств ленты Мёбиуса…………………………………………

    Применение ленты Мёбиуса в нашей жизни…………………………….

Заключение…………………………………………………………………….

Список Литературы………………………………………………………………..

Приложения………………………………………………………………………..

Введение

Актуальность исследования. В наше время актуально изучение различных свойств и нестандартных применений необычных фигур. Лист Мёбиуса востребован, его применение развивается, и свойства не до конца изучены. Его ценность состоит в том, что он дал толчок новым обширным математическим исследованиям. Именно поэтому его часто считают символом современной математики и изображают на различных эмблемах и значках, как, например, на значке механико-математического факультета Московского университета (см. Приложение 1). Актуальность данной тематики предопределило выбор темы научного исследования.

Цель исследования: исследование поверхности ленты Мебиуса.

Гипотеза: если мыисследуем поверхность ленты Мебиуса, то определим её практическое применение

Объект исследования : лента Мебиуса.

Предмет исследования: свойства ленты Мёбиуса.

Задачи:

    познакомиться с историей появления ленты Мебиуса;

    выявить и исследовать свойства ленты Мебиуса;

    установить области применения ленты Мебиуса.

Методы исследования : анализ литературы по данной теме; сравнение; обобщение; моделирование (метод моделирования позволил мне получить информацию о различных свойствах изучаемого объекта на основе опытов с его материальными моделями).

    История создания листа Мёбиуса

Таинственный и знаменитый лист Мебиуса (иногда говорят: "лента Мёбиуса") придумал Август Фердинанд Мёбиус (1790–1868), ученик "короля математиков" Гаусса, немецкий геометр Лейпцигского университета. Первоначально Мёбиус был астрономом. Он ввел аналитические методы исследования, установил понятие проективного преобразования и существование односторонних поверхностей. В возрасте 68 лет ему удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей, одна из которых – лист Мёбиуса.

В 26 лет Мёбиус стал профессором, руководителем астрономической лаборатории в Лейпцигском университете. Научные статьи, лекции, работа. Все как у обычного профессора университета. Рассеянного доброго чудака студенты боготворили.

Как –то раз в доме на пороге комнаты появилась любимая жена. Правда, она была не в хорошем расположении духа. Правильнее сказать, она была разгневана, что для мирного дома Мебиусов было почти так же невероятно, как три раза в год увидеть парад планет, и категорически требовала немедленно уволить служанку, которая настолько бездарна, что даже не способна правильно сшить ленту.

Хмуро разглядывая злосчастную ленту, профессор воскликнул: “Ай да, Марта! Девочка не так уж глупа. Ведь это же односторонняя кольцевая поверхность. У ленточки нет изнанки!” Идея пришла ему в голову, когда служанка неправильно сшила ленту.

Открытая поверхность получила математическое обоснование и имя в честь описавшего ее математика и астронома.

Лента вдохновила на подвиги ни одного добряка-профессора. Взял ее на вооружение и цех парижских портных. Отныне в качестве экзамена для новичка, претендовавшего на зачисление в цех, было пришивание к подолу юбки тесьмы в форме ленты Мебиуса.

Лист Мёбиуса – это топологический объект, простейшая односторонняя поверхность с краем. Сама топология началась именно с листа Мёбиуса.

Слово это придумал Иоганн Бенедикт Листинг, который почти в тоже время, что и его коллега, предложил в качестве первого примера односторонней поверхности уже знакомую нам перекрученную ленту.

Топология (от греч. τόπος - место) - часть геометрии, изучающая в самом общем виде явление непрерывности, а также свойства обобщенных геометрических объектов. Топология является одним из самых «молодых» разделов современной геометрии, в котором изучаются свойства таких фигур, которые не меняются, если их гнуть, растягивать, сжимать, но не склеивать и не рвать, т. е не изменяются при деформациях. Примером топологических объектов являются: буквы И и Н, тонкие длинные воздушные шарики.

    Изучение свойств ленты Мёбиуса

Изготовление ленты Мёбиуса. Для изготовления ленты Мёбиуса потребуются бумажные полосы длиной 30 см и шириной 3 см.

Возьмем бумажную ленту АВСD, разделенную по ширине пополам пунктирной линией. Прикладываем ее концы АВ и СD друг к другу и склеиваем так, чтобы точка А совпала с точкой C, а точка B с точкой D . Получилось знаменитое в математике бумажное кольцо, которое получило особое название - "Лента Мёбиуса".

Опыты с лентой Мёбиуса

1 опыт. Поставьте точку на одной стороне ленты и начертите линию вдоль неё.

Результат: линия проходит непрерывно по двум сторонам, заканчиваясь в начальной поставленной точке.

2 опыт. Попробуйте закрасить ленту Мёбиуса, а затем обычное кольцо.

Результат: лист Мёбиуса закрасился полностью, а вот у кольца одна сторона закрашена, а другая – нет.

3 опыт. Изготовим из бумаги паука и муху, и отправим их «гулять» сначала по обычному листу, а затем по листу Мёбиуса при этом не пересекая края кольца и ленты.

Результат: на обычном кольце паук и муха никогда не встретятся, не пересекая края. На листе Мёбиуса паук и муха встретятся не пересекая края в любом случае.

4 опыт: разрежем кольца пополам вдоль. (Чтобы проверить, какая поверхность получилась необходимо снова прочертить непрерывную линию.)

Результат: получилось два кольца, причем длина окружности каждого будет такой же, как длина окружности первоначально взятого. У листа Мёбиуса получилось одно большое кольцо перекрученное в два раза (в виде восьмерки).

5 опыт: разрежем кольцо вдоль, отступив от края 1/3. (Чтобы проверить, какая поверхность получилась необходимо снова прочертить непрерывную линию.). Точно также разрежем и лист Мёбиуса.

Результат: получилось 2 кольца одно уже, другое шире. В листе Мёбиуса получилось два сцепленных друг с другом кольца, одно маленькое – другое большое.

На основе проведенных опытов можно сделать вывод:

    Лента Мёбиуса имеет только один край.

    Имеет только одну поверхность.

    Объекты по поверхности ленты будут двигаться бесконечно

    Лист Мёбиуса - топологический объект. Как и любая топологическая фигура, лента Мёбиуса не меняет своих свойств, пока ее не разрезают, не разрывают.

    Применение ленты Мёбиуса в нашей жизни

Лента Мёбиуса получила своё применение во многих областях нашей жизни.

Лист Мёбиуса служил вдохновением для скульптур и для графического искусства. Одним из художников, кто особенно любил его и посвятил несколько своих литографий этому математическому объекту, был Морис Корнелис Эшер. Одна из известных – муравьи, ползающие по поверхности Ленты Мёбиуса. (см. Приложение 2)

Кроме того, Лист Мёбиуса встречается и в картинах других художников. (см. Приложение 3)

Встречается он и в архитектуре. (см. Приложение 4) Так, например проектирование национальной библиотеки в Астане по названием «Юрта Мёбиуса».

Их дизайн основан на сочетании четырех форм: кольца, ротонды, арки и юрты, при этом объединенных по принципу ленты Мёбиуса.

Так же есть парковая скамья, повторяющая очертания ленты Мебиуса, ротонда для любования пейзажем посреди поля и дом-гнездо на воде вошли в шорт-лист общероссийской премии в области деревянной архитектуры АРХИWOOD.

Поразил нас и Поп-арт, разработанный для вьетнамского города Хошимин. Со стороны, кажется, что этот многофункциональный комплекс похож на американские горки. Хотя основой для внешнего вида Everrich стали вовсе не американские горки, а лента Мебиуса.

Общая площадь этого многофункционального комплекса составит почти 632 тысячи квадратных метров, 37 этажей. На них расположатся 3 100 жилых квартир, офисные и гостиничные помещения, торговые залы и развлекательный центр.

Использование двойной Ленты Мебиуса можно увидеть в организации структуры выставочного автомобильного комплекса «Мерседес - Бенц».

Лентой Мёбиуса восхищались и поэты. Мы нашли несколько стихотворений, посвященные этому замечательному объекту.

Наталья Юрьевна Иванова

Лист Мёбиуса

Лист Мебиуса - символ математики,
Что служит высшей мудрости венцом…
Он полон неосознанной романтики:
В нем бесконечность свернута кольцом.

В нем – простота, и вместе с нею – сложность,
Что недоступна даже мудрецам:
Здесь на глазах преобразилась плоскость
В поверхность без начала и конца.

Здесь нет пределов, нет ограничений,
Стремись вперед и открывай миры,
Почувствуй силу новых ощущений,
Прими познанья высшего дары:……

……………………………………..
Лист Мёбиуса. (Дмитрий Худолей)

Двенадцать фраз, всего шесть строф,
С десяток рифм, полсотни слов.
Здесь нет начала, нет конца,
И нет изнанки, нет лица…………

Романтическое описание листа Мебиуса встречается в повести Э.Успенского «Красная рука, черная простыня, зеленые пальцы»
«…Но больше всего поразил Рахманина какой-то странный то ли знак, то ли вензель, то ли орден очень и очень аккуратной работы. Никогда раньше он не видел ничего похожего. Это изделие напоминало или старинный герб иностранного дворянского рода, или герб страховой компании, торгующей научными приборами, потому что основу его составлял лист Мебиуса.
Эта вещь очень понравилась Рахманину… В знаке совершенно четко проступал какой-то смысл, были заложены определенные пропорции и связи.»

Удивительно и применение ленты Мёбиуса в науки и технике. В 1923г изобретатель. Ли де Форес предложил записывать звук на киноленту без смены катушек. Придуманы кассеты для магнитофона, где лента перекручивается и соединяется в кольцо, при этом появляется возможность записывать и считывать информацию с двух сторон, что увеличивает емкость кассеты. Так же полоса ленточного конвейера выполнялась в виде ленты Мёбиуса, что позволяло ему работать дольше, потому что вся поверхность ленты равномерно изнашивалась.В матричных принтерах красящая лента также имела вид лист Мёбиуса это для увеличения срока годности. (см. Приложение 5)

Вдохновляет лист Мёбиуса и дизайнеров. Примером является кресла Мёбиуса: этот диван повторяет секрет одноименной ленты, который в данном дизайнерском решении используется в качестве создания специальной атмосферы романтичности. (см. Приложение6)
Лист Мёбиуса используют в оформлении ювелирных изделий и бижутерии. (см. Приложение 7)

Заключение

Таким образом, лента Мёбиуса – первая односторонняя поверхность, которая положила начало новому направлению в геометрии – топологии.

В ходе своего исследования я изучила большое количество литературы. В различных источниках сети Интернет мне встречались работы других учащихся, я проводила сравнение и анализировала прочитанное.

Так же, в своем исследовании я познакомилась с историей создания ленты Мебиуса. Мною было проведено ряд опытов с лентой Мёбиуса, результаты которой меня очень заинтересовали. В связи с этим мне захотелось посмотреть где же используют ленту Мёбиуса. Оказалось, что лента Мёбиуса применяется практически во всех областях нашей жизни.

Работа над темой мне очень понравилось. Для себя я получила много полезной и интересной информации о листе Мёбиуса.

Список литературы

    Большая советская энциклопедия. Том 15. Москва.: третье издание, 1974 г.

    Смирнова И. М. , Смирнов В. А. Учебник геометрии 7-9 классы. Москва.: Мнемозина, 2009 г.

    Журнал «Квант», 1978, №6

    Интернет сайты:

http://www.coolreferat.com

http://www.websib.ru

http://www.genon.ru/

http://nsportal.ru

http://zalivino.net/

http://barabinsk.ucoz.ru

http://mou-kislov.narod.ru/

regconf.vstu.edu.ru›

ПРИЛОЖЕНИЕ 1

ПРИЛОЖЕНИЕ 2

ПРИЛОЖЕНИЕ 3


Лента Мебиуса - простая, но удивительная штука. Сделать ее можно за пару секунд, а сюрпризов, закономерностей и свойств у этого явления - масса. Чтобы это было понятнее на практике, возьмите обычную полоску бумаги, клей, соедините ее концы. Но обязательно так, чтобы один конец оказался перевернут относительно другого на пол-оборота. Вот и готова знаменитая лента Мебиуса.

О получившейся загадочной поверхности можно говорить бесконечно. Задайте себе вопрос о том, сколько поверхностей у бумажного кольца. Две? А вот и нет - одна. Проверить это очень просто. Возьмите фломастер или карандаш и попробуйте закрасить одну из сторон ленты, не отрываясь и не переходя на другую сторону. Получилось? А где же незакрашенная сторона? То-то и оно…

Название ленте дал ее изобретатель: Август Фердинанд Мебиус, профессор университета в Лейпциге. Он посвятил научной работе свою долгую и плодотворную жизнь (а это 78 лет), а сохранял он ясность ума до самого ухода. В свои 75 лет профессор описал уникальные свойства односторонней поверхности с кажущейся двуслойностью. С тех пор лучшие умы геометрии, физики и даже духовности исследовали этот объект вдоль и поперек.

Вы самостоятельно можете провести несколько экспериментов, взяв в руки ленту Мебиуса. Попробуйте разрезать ее вдоль, проведя предварительно среднюю линию по всей поверхности. Как вы думаете, что получится? Два кольца меньшей ширины? Снова неверно - одно! Вдвое длиннее предыдущего, но перекрученное уже дважды. Вот у него-то как раз уже будут две поверхности, а не одна, как в первом случае. Такую завитушку называют Афганской лентой, она тоже широко известна исследователям. Кстати, в духовности этот эффект называют символом дуальности и трактуют иллюзорным восприятием единого.

А если снова провести продольную линию, но не посередине, а ближе к краю на треть ширины ленты? Разрежьте полученное кольцо, и у вас в руках их окажется уже два: лента Мебиуса и Афганская лента, причем непостижимым образом они будут сцеплены друг с другом.

Но это далеко не все сюрпризы. Попробуйте при склеивании ленты в кольцо взять не одну, а две бумажные полоски. А потом три или даже четыре. Гарантирую: результат вас удивит еще больше!

Любопытный опыт можно поставить и гипотетически. Взяв двойную ленту Мебиуса (то есть склеенную из двух полосок) и просунув между ними палец (карандаш, деревянную палочку - что угодно), мы сможем водить им между лентами бесконечно, доказав тем самым, что фигура состоит из двух отдельных частей. А теперь представьте себе, что между этими лентами ползает муха. Нижняя полоска для нее будет «полом», верхняя - «потолком», и так до бесконечности.

Но на деле все совсем не так просто, как кажется. Ведь если поставить метку начала путешествия мухи «на полу», то когда насекомое сделает круг, эта самая метка окажется уже «на потолке». И чтобы снова перейти «на пол», нужно будет совершить еще один круг.

Представьте, что муха ползет по улице. Справа от нее находятся дома под четными номерами, а слева, соответственно, под нечетными. Совершая прогулку, в какой-то момент наша путешественница удивленно заметит, что нечетные номера идут уже справа, а четные - слева! Страшно представить такую ситуацию на наших реальных дорогах с правосторонним движением, ведь скоро придется столкнуться с другими прогуливающимися «лоб-в-лоб». Вот такая она - лента Мебиуса…

Применение этой и других закономерностей нашлось не только в гипотетической, но и в реальной жизни. Например, на основе ленты созданы ремни в печатных устройствах, автоматическая передача, абразивное кольцо в затачивающих механизмах и многое другое, о чем вы даже не подозреваете. Поистине, лента Мебиуса - загадка, которую можно изучать до бесконечности!

Выбор редакции
12 января 2010 года в 16 часов 53 минуты крупнейшее за последние 200 лет землетрясение магнитудой 7 баллов в считанные минуты погубило,...

Незнакомец, советуем тебе читать сказку "Каша из топора" самому и своим деткам, это замечательное произведение созданное нашими предками....

У пословиц и поговорок может быть большое количество значений. А раз так, то они располагают к исследованиям большим и малым. Наше -...

© Зощенко М. М., наследники, 2009© Андреев А. С., иллюстрации, 2011© ООО «Издательство АСТ», 2014* * *Смешные рассказыПоказательный...
Флавий Феодосий II Младший (тж. Малый, Юнейший; 10 апр. 401 г. - † 28 июля 450 г.) - император Восточной Римской империи (Византии) в...
В тревожный и непростой XII век Грузией правила царица Тамара . Царицей эту великую женщину называем мы, русскоговорящие жители планеты....
Житие сщмч. Петра (Зверева), архиепископа ВоронежскогоСвященномученик Петр, архиепископ Воронежский родился 18 февраля 1878 года в Москве...
АПОСТОЛ ИУДА ИСКАРИОТ Апостол Иуда ИскариотСамая трагическая и незаслуженно оскорбленная фигура из окружения Иисуса. Иуда изображён в...
Когнитивная психотерапия в варианте Бека - это структурированное обучение, эксперимент, тренировки в ментальном и поведенческом планах,...