История создания физики как науки. Как работает двигатель прогресса


Введение

Рост физики не только оказывал воздействие на идеи о материальном
мире, математике и философии, но также и преобразовывал человеческое
общество, путем совершенствования его технологий, в целом. Физика - это
не только знания, но и, что даже скорее больше, практический опыт.
Научная революция, начавшаяся в XVI веке, является удобной границей
между древней мыслью и классической физикой. Год 1900 - начало более
современной физики. Появились новые вопросы, которые и сегодня ещё
очень далеки от своего завершения.

Альберт Эйнштейн



В начале XX века
физика столкнулась с серьёзными проблемами. Начали возникать
противоречия между старыми моделями и эмпирическим опытом. Так,
например, наблюдались противоречия между классической механикой и
электродинамикой при попытках измерить скорость света.
Выяснилось, что она не зависит от системы отсчёта. Физика того времени
также была неспособна описать некоторые микроэффекты, такие как атомные
спектра излучений, фотоэффект, эффект Комптона, энергетическое равновесие электромагнитного излучения и вещества. Таким образом, была необходима новая физика.

Основным ударом по старой парадигме стали две теории: это теория относительности Эйнштейна и Квантовая физика. Общая теория относительности была создана в 1916
году, и она позволила связать в одних уравнениях гравитационную и
инертную массы. Необходимость во второй физической революции появилась
в связи с открытием микромира элементарных частиц, а также многих явлений, происходящих с ними.

Ко второй половине XX века в в физике сложилось представление, что
все взаимодействия физической природы можно свести к всего лишь четырём
типам взаимодействия:

  • гравитация
  • электромагнетизм
  • сильное взаимодействие
  • слабое взаимодействие

В последнюю декаду XX века накопились астрономические данные, подтверждающие существование космологической постоянной, тёмной материи и тёмной энергии. Идут поиски общей теории поля - теории всего, которая описала бы все фундаментальные взаимодействия обобщённым физико-математическим образом. Одним из серьёзных кандидатов на эту роль является М-теория, которая, в свою очередь, - недавнее развитие теории суперструн.

Всё больше проблем связано с эволюцией Вселенной, с её ранними
этапами, с природой вакуума, и, наконец, с окончательной природой
свойств податомных частиц. Частичные теории являются в настоящее время
лучшими, что физика может предложить в настоящее время. См. также Последние достижения в физике.

Список неразрешенных проблем в физике постоянно множится; однако,

«Мы больше атома, но, кажется, уже знаем о нём все.» - Ричард Фейнман

Ранняя физика

По природе своей, человек - существо любопытное. Ещё с древних пор
его начали интересовать вещи, казавшиеся ранее обыденными, относящиеся
к окружающему миру. Тогда давно основной причиной этого любопытства,
скорее всего, был страх. И лишь немногих это интересовало из чистого
любопытства, любопытства ради любопытства.

Действительно, почему, например, происходит притяжение, почему
разные материалы имеют разные свойства? Ну почему же солнце заходит с
одной стороны, а восходит с другой?! Люди всегда интересовались миром.
Многие свойства природы приписывались богам. Неправильные теории
приобретали свойства религии. Их передавали из поколения в поколения.
Многие теории того времени были в значительной степени изложены в форме
философских строк. Мало было людей, готовых в них сомневаться. Тем
более на том этапе развития наличие любой теории или отсутствие таковой
большого влияния на жизнь не оказывало.

Античная физика

Средств для проверки теорий и выяснения вопроса, какая из них верна,
в древности было крайне мало, даже если речь шла о земных каждодневных
явлениях. Единственная физическая величина, которую умели тогда
достаточно точно измерять - длина; позже к ней добавился угол. Эталоном времени служили сутки,
которые в Древнем Египте делили не на 24 часа, а на 12 дневных и 12
ночных, так что было два разных часа, и в разные сезоны
продолжительность часа была разной. Но даже когда установили привычные
нам единицы времени, из-за отсутствия точных часов большинство
физических экспериментов были просто невозможно провести. Поэтому
естественно, что вместо научных школ возникали полурелигиозные учения.

Преобладала геоцентрическая система мира, хотя пифагорейцы развивали и пироцентрическую , в которой звёзды, Солнце, Луна и шесть планет обращаются вокруг Центрального Огня . Чтобы всего получилось священное число небесных сфер (десять), шестой планетой объявили Противоземлю . Впрочем, отдельные пифагорейцы (Аристарх Самосский и др.) создали гелиоцентрическую систему. У пифагорейцев возникло впервые и понятие эфира как всеобщего заполнителя пустоты.

Первую формулировку закона сохранения материи предложил Эмпедокл в V веке до н. э.:

Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.

Позже аналогичный тезис высказывали Демокрит, Аристотель и другие..

Термин «Физика»
возник как название одного из сочинений Аристотеля. Предметом этой
науки, по мнению автора, было выяснение первопричин явлений:

Так как научное знание возникает при всех исследованиях, которые
простираются на начала, причины или элементы путём их познания (ведь мы
тогда уверены в познании всякой вещи, когда узнаём её первые причины,
первые начала и разлагаем её впредь до элементов), то ясно, что и в
науке о природе надо определить прежде всего то, что относится к
началам.

Такой подход долго (фактически до Ньютона)
отдавал приоритет метафизическим фантазиям перед опытным исследованием.
В частности, Аристотель и его последователи утверждали, что движение
тела поддерживается приложенной к нему силой, и при ее отсутствии тело
остановится (по Ньютону, тело сохраняет свою скорость, а действующая
сила меняет ее значение и/или направление).

Некоторые античные школы предложили учение об атомах как первооснове материи. Эпикур даже полагал, что свобода воли человека вызвана тем, что движение атомов подвержено случайным смещениям.

Кроме математики, эллины успешно развивали оптику. У Герона Александрийского
встречается первый вариационный принцип «наименьшего времени» для
отражения света. Тем не менее в оптике древних были и грубые ошибки.
Например, угол преломления считался пропорциональным углу падения (эту
ошибку разделял даже Кеплер). Гипотезы о природе света и цветности были многочисленны и довольны нелепы.

Индийский вклад


Таблица механики , 1728 Cyclopaedia .



В позднюю Vedic эру (c IX по VI в. до н.э), астроном Яджнаволкья
(Yajnavalkya), в своей Shatapatha Brahmana, упомянуто раннее понятие
гелиоцентр (heliocentrism), в котором Земля была круглой, и Солнце
являлось «центром сфер». Он измерил растояния от Луны и Солнца до Земли
в 108 диаметров самих объектов. Эти значения практически совпадают с
современными: для Луны - 110.6, и для Солнца - 107.6.

Индусы представляли мир состоящим из пяти основных элементов: земля, огонь, воздух, вода и эфир/пространство. Позже, с VII в. до н.э, они сформулировали теорию атома,
начиная с Kanada и Pakudha Katyayana. Поклонники теории полагали, что
атом состоит из элементов, до 9 элементов в каждом атоме, каждый
элемент имеет до 24 свойств. Они развивали следующие теории, о том как
атомы могут объединяться, реагировать, вибрировать, перемещаться и
выполнять другие действия. Также разрабатывались теории того, как атомы
могут сформировать двойные молекулы, которые объединяются далее, чтобы
сформировать ещё большие молекулы, и как частицы сначала объединяются в
пары, и затем группа в трио пар, которые являются наименьшими видимыми
единицами материи. Эти схождения с современными атомными теориями
потрясают воображение. Ещё у индусов атомы были делимыми частицами, до
чего мы догадались лишь в 30-х годах ХХ века, и что положило начало
всей ядерной энергетике.

Принцип относительности (чтобы не перепутать с теорией относительности Эйнштейна)
был доступен в зачаточной форме с VI в. до н.э в древнем индийском
философском понятии «sapekshavad», буквально «теория относительности»
на Санскрите.

Две школы, Samkhya и Vaisheshika, развивали теории света с VI-V в.
до н. э. Согласно школе Samkhya, свет - один из пяти фундаментальных
элементов, из которых позже появляются более тяжелые элементы. Школа
Vaisheshika определила движение в терминах немгновенного движения
физических атомов. Лучи света считались потоком высоких скоростных
атомов огня, которые могут проявлять различные особенности в
зависимости от скорости и мер этих частиц. Буддисты
Дигнга (V в.) и Dharmakirti (VII в.) развивали теорию света, состоящего
из частиц энергии, подобных современному понятию фотонов.

Почетный австралийский специалист по индийской культуре (indologist)
A. L. Basham заключил, что «они были блестящими образными объяснениями
физической структуры мира, и в основном, согласились с открытиями
современной физики.»

В 499 году астроном-математик Арьябхата (Aryabhata) представлял на обсуждение детальную модель
гелиоцентрической солнечной системы тяготения, где планеты вращаются
вокруг своей оси (сменяя таким образом день и ночь) и имеют
эллиптическую орбиту (приобретая таким образом зиму и лето).
Удивительно, что в такой системе луна не являлась источником света, а
только отражала солнечный свет от своей поверхности. Арьябхата также
правильно объяснил причины солнечных и лунных затмений и предсказал их
времена, дал радиусы планетарных орбит вокруг Солнца, и точно измерил
длины дня, звездного года, и диаметра Земли. Его объяснение затмений и
намёки на вращение Земли вызвало негодование правоверных индуистов, к
которым присоединился даже просвещённый Брахмагупта:

Последователи Ариабхаты говорят, что Земля движется, а небо
покоится. Но в их опровержение было сказано, что если бы это было так,
то камни и деревья упали бы с Земли…
Среди людей есть такие, которые думают, что затмения вызываются не
Головой [дракона Раху]. Это абсурдное мнение, ибо это она вызывает
затмения, и большинство жителей мира говорят, что именно она вызывает
их. В Ведах, которые есть Слово Божие, из уст Брахмы говорится, что
Голова вызывает затмения. Напротив того, Ариабхата, идя наперекор всем,
из вражды к упомянутым священным словам утверждает, что затмение
вызывается не Головой, а только Луной и тенью Земли… Эти авторы должны
подчиниться большинству, ибо всё, что есть в Ведах - священно.

Брахмагупта, в его Brahma Sputa Siddhanta в 628 году представляет гравитацию как силу притяжения и показывает закон притяжения.

Индийско-арабские цифры стали ещё одним важнейшим вкладом индусов в науку. Современная позиционная система счисления (индусско-арабская система цифр) и ноль была сначала развита в Индии, наряду с тригонометрическими функциями синуса и косинуса .
Эти математические достижения, наряду с индийскими достижения в физике,
были приняты Исламским Халифатом, после чего и начали распространяться
по Европе и другим частям света.

Китайский вклад

В XII веке до н. э., в Китае был изобретен первый редукционный механизм , the South Pointing Chariot , это было также первым использованием дифференциальной передачи .

Китаец «Мо Чинг » в III веке до н. э. стал автором ранней версии закона движения Ньютона.

«Прекращение движения происходит из-за противодействующей силы… Если
не будет никакой противостоящей силы …, то движение никогда не
закончится. Это верно настолько же, как и то, что бык не лошадь.»

Более поздние вклады Китая включают изобретения бумаги, печатного дела , пороха, и компаса. Китайцы первыми «открыли» отрицательные числа, которые оказали сильное влияние на развитие физики и математики.

Средневековая Европа

XIII век: изобретены очки, правильно объяснено явление радуги, освоен компас.

XVI век: Николай Коперник предложил гелиоцентрическую систему мира.

Симон Стевин в книгах «Десятая» (1585 ), «Начала статики» и других ввёл в обиход десятичные дроби,
сформулировал (независимо от Галилея) закон давления на наклонную
плоскость, правило параллелограмма сил, продвинул гидростатику и
навигацию. Любопытно, что формулу равновесия на наклонной плоскости он
вывел из невозможности вечного движения (которое считал аксиомой).

Иоганн Кеплер
значительно продвинул оптику, в том числе физиологическую (выяснил роль
хрусталика, верно описал причины близорукости и дальнозоркости),
существенно доработал теорию линз. В 1609 году он издал книгу «Новая астрономия» с двумя законами движения планет; третий закон он сформулировал в более поздней в книге «Мировая гармония» (1619 ).
Заодно он формулирует в ясном виде первый закон механики: всякое тело,
на которое не действуют иные тела, находится в покое или совершает
прямолинейное движение. Менее ясно формулируется закон всеобщего
притяжения: сила, действующая на планеты, проистекает от Солнца и
убывает по мере удаления от него, и то же верно для всех прочих
небесных тел. Источником этой силы, по его мнению, является магнетизм в
сочетании с вращением Солнца и планет вокруг своей оси.

В 1608 году в Голландии изобретена зрительная труба. Галилео Галилей ,
усовершенствовав её, строит первый телескоп и проводит исследование
небесных объектов. Открывает спутники Юпитера, фазы Венеры, звёзды в
составе Млечного пути и многое другое. Решительно поддерживает теорию
Коперника (но столь же решительно отвергает теорию Кеплера).
Формулирует основы теоретической механики - принцип относительности, закон инерции, квадратичный закон падения, даже принцип виртуальных перемещений , изобретает термометр.

Зарождение теоретической физики

XVII век. Метафизика Декарта и механика Ньютона.

Во второй половине XVII века интерес к науке в основных странах Европы резко возрос. Возникают первые Академии наук и первые научные журналы.

1600 : первое экспериментальное исследование электрических и магнитных явлений проводит врач английской королевы Уильям Гильберт . Он выдвигает гипотезу, что Земля является магнитом. Именно он предложил сам термин «электричество».




1637 : Рене Декарт
издал «Рассуждение о методе» с приложениями «Геометрия», «Диоптрика»,
«Метеоры». Считал пространство материальным, а причиной движения -
вихри материи, возникающие, чтобы заполнить пустоту (которую считал
невозможной и поэтому не признавал атомов), или от вращения тел. В
«Диоптрике» Декарт впервые дал правильный закон преломления света . Создаёт аналитическую геометрию и вводит почти современную математическую символику.

В 1644 году
вышла книга Декарта «Начала философии». В ней провозглашается, что
изменение состояния материи возможно только при воздействии на неё
другой материи. Это сразу исключает возможность дальнодействия
без ясного материального посредника. Приводится закон инерции. Второй
закон взаимодействия - закон сохранения количества движения - тоже
приводится, однако обесценивается тем, что чёткое определение
количества движения у Декарта отсутствует.

Декарт уже видел, что движение планеты - это ускоренное движение.
Вслед за Кеплером Декарт считал: планеты ведут себя так, как будто
существует притяжение солнца. Для того чтобы объяснить притяжение, он
сконструировал механизм Вселенной, в которой все тела приводятся в
движение толчками вездесущей, но невидимой, «тонкой материи». Лишенные
возможности двигаться прямолинейно, прозрачные потоки этой среды
образовали в пространстве системы больших и малых вихрей. Вихри,
подхватывая более крупные, видимые частицы обычного вещества, формируют
круговороты небесных тел. Они вращают их и несут по орбитам. Внутри
малого вихря находится и Земля. Круговращение стремиться растащить
прозрачный вихрь вовне. При этом частицы вихря гонят видимые тела к
Земле. По Декарту, это и есть тяготение. Система Декарта была первой
попыткой механически описать происхождение и движение планетной системы.

Исаак Ньютон



1687 : «Начала» Ньютона . Физические концепции Ньютона находились в резком противоречии с декартовскими. Ньютон верил в атомы,
считал дедукцию вторичным методом, которому должны предшествовать
эксперимент и конструирование математических моделей. Ньютон заложил
основы механики, оптики, теории тяготения, небесной механики, открыл и далеко продвинул математический анализ.
Но его теория тяготения, в которой притяжение существовала без
материального носителя и без механического объяснения, долгое время
отвергалась учёными континентальной Европы (в том числе Гюйгенсом, Эйлером и др.). Только во второй половине XVIII века, после работ Клеро по теории движения Луны и кометы Галлея, критика утихла.

XVIII век. Механика, теплород, электричество.

В XVIII веке ускоренными темпами развивались механика, небесная механика, учение о теплоте. Начинается исследование электрических и магнитных явлений. Картезианство, не подтверждаемое опытом, быстро теряет сторонников.

Создание аналитической механики (Эйлер, Лагранж) завершило превращение теоретической механики в раздел математического анализа. Утверждается общее мнение, что все физические процессы - проявления механического движения вещества. Ещё Гюйгенс решительно высказывался за необходимость такого представления о природе явлений:

Истинная философия
должна видеть в явлениях механических первопричину всех явлений; по
моему мнению, иное представление и невозможно, если мы только не желаем
потерять надежду что-либо понимать в Философии. («Трактат о свете»).



Герман фон Гельмгольц



Даже в XIX веке в первичности механики не сомневался Гельмгольц :

Конечной целью всех естественных наук является разыскание движений,
лежащих в основе всех изменений, и причин, производящих эти движения,
то есть слияние этих наук с механикой.

Представление о «тонких материях», переносящих тепло, электричество
и магнетизм, в XVIII веке сохранилось и даже расширилось. В
существования теплорода, носителя теплоты, верили многие физики, начиная с Галилея ; однако другой лагерь, в который входили Декарт, Гук, Даниил Бернулли и Ломоносов, придерживался молекулярно-кинетической гипотезы.

В начале века голландец Фаренгейт изобрёл современный термометр на ртутной или спиртовой основе, и предложил шкалу Фаренгейта. До конца века появились и другие варианты: Реомюр (1730 ), Цельсий (1742 ) и другие. С этого момента открывается возможность измерения количества тепла в опытах.

1734 : французский учёный Дюфе обнаружил, что существуют 2 вида электричества: положительное и отрицательное.

1745 : изобретена лейденская банка. Франклин развивает гипотезу об электрической природе молнии, изобретает громоотвод . Появляются электростатическая машина, электрометр Рихмана.

1784 : запатентована паровая машина Уатта. Начало широкого распространения паровых двигателей.

1780-е годы: открыт и обоснован точными опытами закон Кулона.

Становление физики (до 17 в.). Физические явления окружающего мира издавна привлекали внимание людей. Попытки причинного объяснения этих явлений предшествовали созданию Ф. в современном смысле этого слова. В греко-римском мире (6 в. до н. э. – 2 в. н. э.) впервые зародились идеи об атомном строении вещества (Демокрит , Эпикур , Лукреций),была разработана геоцентрическая система мира (Птолемей), установлены простейшие законы статики (правило рычага), открыты закон прямолинейного распространения и закон отражения света, сформулированы начала гидростатики (закон Архимеда), наблюдались простейшие проявления электричества и магнетизма.

Итог приобретённых знаний в 4 в. до н. э. был подведён Аристотелем . Физика Аристотеля включала отдельные верные положения, но в то же время в ней отсутствовали многие прогрессивные идеи предшественников, в частности атомная гипотеза. Признавая значение опыта, Аристотель не считал его главным критерием достоверности знания, отдавая предпочтение умозрительным представлениям. В средние века учение Аристотеля, канонизированное церковью, надолго затормозило развитие науки.

Наука возродилась лишь в 15–16 вв. в борьбе со схоластизированным учением Аристотеля. В середине 16 в. Н. Коперник выдвинул гелиоцентрическую систему мира и положил начало освобождению естествознания от теологии. Потребности производства, развитие ремёсел, судоходства и артиллерии стимулировали научные исследования, опирающиеся на опыт. Однако в 15–16 вв. экспериментальные исследования носили в основном случайный характер. Лишь в 17 в. началось систематическое применение экспериментального метода в Ф., и это привело к созданию первой фундаментальной физической теории – классической механики Ньютона.

Формирование физики как науки (начало 17 – конец 18 вв.).

Развитие Ф. как науки в современном смысле этого слова берёт начало с трудов Г. Галилея (1-я половина 17 в.), который понял необходимость математического описания движения. Он показал, что воздействие на данное тело окружающих тел определяет не скорость, как считалось в механике Аристотеля, а ускорение тела. Это утверждение представляло собой первую формулировку закона инерции. Галилей открыл принцип относительности в механике (см. Галилея принцип относительности), доказал независимость ускорения свободного падения тел от их плотности и массы, обосновывал теорию Коперника. Значительные результаты были получены им и в др. областях Ф. Он построил зрительную трубу с большим увеличением и сделал с её помощью ряд астрономических открытий (горы на Луне, спутники Юпитера и др.). Количественное изучение тепловых явлений началось после изобретения Галилсем первого термометра.

В 1-й половине 17 в. началось успешное изучение газов. Ученик Галилея Э. Торричелли установил существование атмосферного давления и создал первый барометр. Р. Бойль и Э. Мариотт исследовали упругость газов и сформулировали первый газовый закон, носящий их имя. В.Снеллиус и Р. Декарт открыли закон преломления света. В это же время был создан микроскоп. Значительный шаг вперёд в изучении магнитных явлений был сделан в самом начале 17 в. У.Гильбертом . Он доказал, что Земля является большим магнитом, и первый строго разграничил электрические и магнитные явления.

Основным достижением Ф. 17 в. было создание классической механики. Развивая идеи Галилея, Х.Гюйгенса и др. предшественников, И. Ньютон в труде "Математические начала натуральной философии" (1687) сформулировал все основные законы этой науки (см. Ньютона законы механики). При построении классической механики впервые был воплощён идеал научной теории, существующий и поныне. С появлением механики Ньютона было окончательно понято, что задача науки состоит в отыскании наиболее общих количественно формулируемых законов природы.

Наибольших успехов механика Ньютона достигла при объяснении движения небесных тел. Исходя из законов движения планет, установленных И. Кеплером на основе наблюдений Т. Браге , Ньютон открыл закон всемирного тяготения (см. Ньютона закон тяготения). С помощью этого закона удалось с замечательной точностью рассчитать движение Луны, планет и комет Солнечной системы, объяснить приливы и отливы в океане. Ньютон придерживался концепции дальнодействия, согласно которой взаимодействие тел (частиц) происходит мгновенно непосредственно через пустоту; силы взаимодействия должны определяться экспериментально. Им были впервые четко сформулированы классические представления об абсолютном пространстве как вместилище материи, не зависящем от её свойств и движения, и абсолютном равномерно текущем времени. Вплоть до создания теории относительности эти представления не претерпели никаких изменений.

Большое значение для развития Ф. имело открытие Л. Гальвани и А. Вольта электрического тока. Создание мощных источников постоянного тока – гальванических батарей – дало возможность обнаружить и изучить многообразные действия тока. Было исследовано химическое действие тока (Г. Дэви , М. Фарадей). В. В. Петров получил электрическую дугу. Открытие Х. К. Эрстедом (1820) действия электрического тока на магнитную стрелку доказало связь между электричеством и магнетизмом. Основываясь на единстве электрических и магнитных явлений, А. Ампер пришёл к выводу, что все магнитные явления обусловлены движущимися заряженными частицами – электрическим током. Вслед за этим Ампер экспериментально установил закон, определяющий силу взаимодействия электрических токов (Ампера закон).

В 1831 Фарадей открыл явление электромагнитной индукции (см. Индукция электромагнитная). При попытках объяснения этого явления с помощью концепции дальнодействия встретились значительные затруднения. Фарадей высказал гипотезу (ещё до открытия электромагнитной индукции), согласно которой электромагнитные взаимодействия осуществляются посредством промежуточного агента – электромагнитного поля (концепция близкодействия). Это послужило началом формирования новой науки о свойствах и законах поведения особой формы материи – электромагнитного поля.

Ещё до открытия этого закона С. Карно в труде "Размышления о движущей силе огня и о машинах, способных развивать эту силу" (1824) получил результаты, послужившие основой для др. фундаментального закона теории теплоты – второго начала термодинамики . Этот закон сформулирован в работах Р. Клаузиуса (1850) и У. Томсона (1851). Он является обобщением опытных данных, свидетельствующих о необратимости тепловых процессов в природе, и определяет направление возможных энергетических процессов. Значительную роль в построении термодинамики сыграли исследования Ж. Л. Гей-Люссака , на основе которых Б. Клапейроном было найдено уравнение состояния идеального газа, обобщённое в дальнейшем Д. И. Менделеевым .

Одновременно с развитием термодинамики развивалась молекулярно-кинетическая теория тепловых процессов. Это позволило включить тепловые процессы в рамки механической картины мира и привело к открытию нового типа законов – статистических, в которых все связи между физическими величинами носят вероятностный характер.

На первом этапе развития кинетической теории наиболее простой среды – газа – Джоуль, Клаузиус и др. вычислили средние значения различных физических величин: скорости молекул, числа их столкновений в секунду, длины свободного пробега и т.д. Была получена зависимость давления газа от числа молекул в единице объёма и средней кинетической энергии поступательного движения молекул. Это позволило вскрыть физический смысл температуры как меры средней кинетической энергии молекул.

Второй этап развития молекулярно-кинетической теории начался с работ Дж. К. Максвелла . В 1859, введя впервые в Ф. понятие вероятности, он нашёл закон распределения молекул по скоростям (см. Максвелла распределение). После этого возможности молекулярно-кинетической теории необычайно расширились и привели в дальнейшем к созданию статистической механики. Л.Больцман построил кинетическую теорию газов и дал статистическое обоснование законов термодинамики. Основная проблема, которую в значительной степени удалось решить Больцману, заключалась в согласовании обратимого во времени характера движения отдельных молекул с очевидной необратимостью макроскопических процессов. Термодинамическому равновесию системы, по Больцману, соответствует максимум вероятности данного состояния. Необратимость процессов связана со стремлением систем к наиболее вероятному состоянию. Большое значение имела доказанная им теорема о равномерном распределении средней кинетической энергии по степеням свободы.

Классическая статистическая механика была завершена в работах Дж. У. Гиббса (1902), создавшего метод расчёта функций распределения для любых систем (а не только газов) в состоянии термодинамического равновесия. Всеобщее признание статистическая механика получила в 20 в. после создания А. Эйнштейном и М. Смолуховским (1905–06) на основе молекулярно-кинетической теории количественной теории броуновского движения , подтвержденной в опытах Ж. Б. Перрена .

Во 2-й половине 19 в. длительный процесс изучения электромагнитных явлений был завершен Максвеллом. В своей основной работе "Трактат об электричестве и магнетизме" (1873) он установил уравнения для электромагнитного поля (носящие его имя), которые объясняли все известные в то время факты с единой точки зрения и позволяли предсказывать новые явления. Электромагнитную индукцию Максвелл интерпретировал как процесс порождения переменным магнитным полем вихревого электрического поля. Вслед за этим он предсказал обратный эффект – порождение магнитного поля переменным электрическим полем (см. Ток смещения). Важнейшим результатом теории Максвелла был вывод о конечности скорости распространения электромагнитных взаимодействий, равной скорости света. Экспериментальное обнаружение электромагнитных волн Г. Р. Герцем (1886–89) подтвердило справедливость этого вывода. Из теории Максвелла вытекало, что свет имеет электромагнитную природу. Тем самым оптика стала одним из разделов электродинамики. В самом конце 19 в. П. Н. Лебедев обнаружил на опыте и измерил давление света, предсказанное теорией Максвелла, а А. С. Попов впервые использовал электромагнитные волны для беспроволочной связи.

Опыт показывал, что сформулированный Галилеем принцип относительности, согласно которому механические явления протекают одинаково во всех инерциальных системах отсчёта , справедлив и для электромагнитных явлений. Поэтому уравнения Максвелла не должны изменять свою форму (должны быть инвариантными) при переходе от одной инерциальной системы отсчёта к другой. Однако оказалось, что это справедливо лишь в том случае, если преобразования координат и времени при таком переходе отличны от преобразований Галилея, справедливых в механике Ньютона. Лоренц нашёл эти преобразования (Лоренца преобразования), но не смог дать им правильную интерпретацию. Это было сделано Эйнштейном в его частной теории относительности.

Открытие частной теории относительности показало ограниченность механической картины мира. Попытки свести электромагнитные процессы к механическим процессам в гипотетической среде – эфире оказались несостоятельными. Стало ясно, что электромагнитное поле представляет собой особую форму материи, поведение которой не подчиняется законам механики.

В 1916 Эйнштейн построил общую теорию относительности – физическую теорию пространства, времени и тяготения. Эта теория ознаменовала новый этап в развитии теории тяготения.

На рубеже 19–20 вв., ещё до создания специальной теории относительности, было положено начало величайшей революции в области Ф., связанной с возникновением и развитием квантовой теории.

В конце 19 в. выяснилось, что распределение энергии теплового излучения по спектру, выведенное из закона классической статистической физики о равномерном распределении энергии по степеням свободы, противоречит опыту. Из теории следовало, что вещество должно излучать электромагнитные волны при любой температуре, терять энергию и охлаждаться до абсолютного нуля, т. е. что тепловое равновесие между веществом и излучением невозможно. Однако повседневный опыт противоречил этому выводу. Выход был найден в 1900 М. Планком , показавшим, что результаты теории согласуются с опытом, если предположить, в противоречии с классической электродинамикой, что атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия каждого такого кванта прямо пропорциональна частоте, а коэффициент пропорциональности является квант действия h = 6,6×10 -27 эрг ×сек, получивший впоследствии название постоянной Планка.

В 1905 Эйнштейн расширил гипотезу Планка, предположив, что излучаемая порция электромагнитной энергии распространяется и поглощается также только целиком, т. с. ведёт себя подобно частице (позднее она была названа фотоном). На основе этой гипотезы Эйнштейн объяснил закономерности фотоэффекта , не укладывающиеся в рамки классической электродинамики.

Т. о., на новом качественном уровне была возрождена корпускулярная теория света. Свет ведёт себя подобно потоку частиц (корпускул); однако одновременно ему присущи и волновые свойства, которые проявляются, в частности, в дифракции и интерференции света. Следовательно, несовместимые с точки зрения классической Ф. волновые и корпускулярные свойства присущи свету в равной мере (дуализм света). "Квантование" излучения приводило к выводу, что энергия внутриатомных движений также может меняться только скачкообразно. Такой вывод был сделан Н.Бором в 1913.

В 1926 Шрёдингер, пытаясь получить дискретные значения энергии атома из уравнения волнового типа, сформулировал основное уравнение квантовой механики, названное его именем. В.Гейзенберг и Борн (1925) построили квантовую механику в др. математической форме – т. н. матричную механику.

Согласно принципу Паули, энергия всей совокупности свободных электронов металла даже при абсолютном нуле отлична от нуля. В невозбуждённом состоянии все уровни энергии, начиная с нулевого и кончая некоторым максимальным уровнем (уровнем Ферми), оказываются занятыми электронами. Эта картина позволила Зоммерфельду объяснить малость вклада электронов в теплоёмкость металлов: при нагревании возбуждаются только электроны вблизи уровня Ферми.

В работах Ф. Блоха , Х. А. Бете и Л. Неель Гинзбурга квантовой электродинамики. Первые попытки непосредственного исследования строения атомного ядра относятся к 1919, когда Резерфорд путём обстрела стабильных ядер азота a-частицами добился их искусственного превращения в ядра кислорода. Открытие нейтрона в 1932 Дж. Чедвиком привело к созданию современной протонно-нейтронной модели ядра (Д. Д. Иваненко , Гейзенберг). В 1934 супруги И. и Ф. Жолио-Кюри открыли искусственную радиоактивность.

Создание ускорителей заряженных частиц позволило изучать различные ядерные реакции. Важнейшим результатом этого этапа Ф. явилось открытие деления атомного ядра.

В 1939–45 была впервые освобождена ядерная энергия с помощью цепной реакции деления 235 U и создана атомная бомба. Заслуга использования управляемой ядерной реакции деления 235 U в мирных, промышленных целях принадлежит СССР. В 1954 в СССР была построена первая атомная электростанция (г. Обнинск). Позже рентабельные атомные электростанции были созданы во многих странах.

нейтрино и открыто много новых элементарных частиц, в том числе крайне нестабильные частицы – резонансы , среднее время жизни которых составляет всего 10 -22 –10 -24 сек. Обнаруженная универсальная взаимопревращаемость элементарных частиц указывала на то, что эти частицы не элементарны в абсолютном смысле этого слова, а имеют сложную внутреннюю структуру, которую ещё предстоит открыть. Теория элементарных частиц и их взаимодействий (сильных, электромагнитных и слабых) составляет предмет квантовой теории поля – теории, ещё далёкой от завершения.

Всю историю физики можно условно разделить на три основных этапа:

· древний и средневековый,

· классической физики,

· современной физики .

Первый этап развития физики иногда называют донаучным. Однако такое название нельзя считать полностью оправданным: фундаментальные зерна физики и естествознания в целом были посеяны еще в глубокой древности. Это самый длительный этап. Он охватывает период от времен Аристотеля до начала XVII в., поэтому и называется древним и средневековым этапом .

Начало второго этапа – этапа классической физики – связывают с одним из основателей точного естествознания – итальянским ученым Галилео Галилеем и основоположником классической физики, английским математиком, механиком, астрономом и физиком Исааком Ньютоном. Второй этап продолжался до конца XIX в.

К началу XX столетия появились экспериментальные результаты, которые трудно было объяснить в рамках классических представлений. В этой связи был предложен совершенно новый подход – квантовый, основанный на дискретной концепции. Квантовый подход впервые ввел в 1900 г. немецкий физик Макс Планк (1858–1947), вошедший в историю развития физики как один из основоположников квантовой теории. Его трудами открывается третий этап развития физики – этап современной физики , включающий не только квантовые, но и классические представления.

Дадим краткую характеристику каждого из этапов. Принято считать, что первый этап открывает геоцентрическая система мировых сфер, разработанная Аристотелем. Учение о геоцентрической системе мира начиналось с геоцентрической системы кольцевых мироустроений еще гораздо раньше – в VI в. до н. э. Ее предложил Анаксимандр (ок. 610 – после 547 до н. э.), древнегреческий философ, представитель Милетской школы. Данное учение было развито Евдоксом Книдским (ок. 406 – ок. 355 до н. э.), древнегреческим математиком и астрономом. Геоцентрическая система Аристотеля родилась, таким образом, на подготовленной его предшественниками идейной почве.

Переход от эгоцентризма – отношения к миру, которое характеризуется сосредоточенностью на своем индивидуальном «я», к геоцентризму – первый и, пожалуй, самый трудный шаг на пути зарождения ростков естествознания. Непосредственно видимая полусфера неба, ограниченная местным горизонтом, была дополнена аналогичной невидимой полусферой до полной небесной сферы. Мир стал как бы более завершенным – специфическим, но оставаясь ограниченным небесной сферой. Соответственно и сама Земля, противопоставленная остальной (небесной) сферической Вселенной как постоянно занимающая в ней особое, центральное положение и абсолютно неподвижная, стала считаться сферической. Пришлось признать не только возможность существования антиподов – обитателей диаметрально противоположных частей земного шара, но и принципиальную равноправность всех земных обитателей мира. Такие представления, носившие в основном умозрительный характер, подтверждались гораздо позднее – в эпоху первых кругосветных путешествий и великих географических открытий, т. е. на рубеже XV и XVI вв., когда само геоцентрическое учение Аристотеля с канонической системой идеальных равномерно вращающихся небесных сфер, сочлененных друг с другом своими осями вращения, с принципиально различной физикой или механикой для земных и небесных тел уже доживало свои последние годы.

Почти полторы тысячи лет отделяет завершенную геоцентрическую систему греческого астронома Клавдия Птоломея (ок.90 – ок. 160) от достаточно совершенной гелиоцентрической системы (рис. 3.1) польского математика и астронома Николая Коперника (1473–1543). Вершиной гелиоцентрической системы можно считать законы движения планет, открытые немецким астрономом Иоганном Кеплером (1571–1630), одним из творцов астрономии нового времени.

Рис. 3.1. Система мира по Копернику (в центре Солнце)

Астрономические открытия Галилео Галилея и его физические эксперименты, а также общие динамические законы механики вместе с универсальным законом всемирного тяготения, сформулированные Исааком Ньютоном, положили начало классическому этапу развития физики .

Между названными этапами нет четких границ. Для физики и естествознания в целом характерно в большей степени поступательное развитие: законы Кеплера – венец гелиоцентрической системы с весьма длительной историей, начавшейся еще в древние времена; законам Ньютона предшествовали законы Кеплера и труды Галилея; Кеплер открыл законы движения планет в итоге логически и исторически естественного перехода от геоцентризма к гелиоцентризму, но не без эвристических идей аристотелевской механики.

Механика Аристотеля разделялась на земную и небесную, т. е. не обладала надлежащим принципиальным единством: аристотелевское взаимное противопоставление Земли и Неба сопровождалось принципиальной противоположностью относящихся к ним законов его механики, которая тем самым оказалась в целом внутренне противоречивой, несовершенной.

Галилей опроверг аристотелевское противопоставление Земли и Неба. Он предложил применять закон инерции Аристотеля, характеризующий равномерное движение небесных тел вокруг Земли, для земных тел при их свободном движении в горизонтальном направлении. Мысленно расчленяя всевозможные земные тела на отдельные части, он установил для них закон одинаково быстрого (или одинаково равномерно ускоренного) свободного падения независимо от их массы, когда свободное падение в вертикальном направлении к центру Земли происходит в идеальных условиях, без какого бы то ни было сопротивления, т. е. в пустоте. Этот закон находится в противоречии с канонизированным аристотелевским учением, в соответствии с которым «природа не терпит пустоты», и весомые тела падают в реальных условиях под действием присущей им силы тяжести на самом деле тем быстрее, чем больше их массы.

Кеплер и Галилей, отталкиваясь таким образом от первоначальных представлений, радикально пересмотрели всю механику. В результате перехода от геоцентризма к гелиоцентризму они пришли к своим кинематическим законам, которые предопределили принципиально единую для земных и небесных тел механику Ньютона со всеми сформулированными им классическими динамическими законами, включая универсальный закон всемирного тяготения. При этом из «Математических начал натуральной философии» – фундаментального труда Исаака Ньютона – можно заключить, что его динамические законы не только следуют из соответствующих кинетических законов Кеплера и Галилея, но и сами могут быть положены в основу всех трех кинематических законов Кеплера и обоих кинематических законов Галилея, а также всевозможных теоретически ожидаемых отклонений от них из-за сложного строения и взаимных гравитационных возмущений взаимодействующих тел.

Законы Кеплера послужили основой для открытия новых планет. Так, по результатам наблюдений отклонений в движении планеты Уран, сделанных в 1781 г. английским астрономом и оптиком Уильямом Гершелем (1738–1822), английский астроном и математик Джон Кауч Адамс (1819–1892) и французский астроном Урбен Жан Жозеф Леверье (1811–1877) независимо друг от друга и почти одновременно теоретически предсказали существование еще одной – заурановой планеты, которую обнаружил на небе в 1846 г. немецкий астроном Иоганн Галле (1812–1910). Эта планета носит название Нептун. Затем американский астроном Персиваль Ловелл (1855–1916) аналогично предсказал в 1905 г. существование еще одной заурановой планеты и организовал в созданной им обсерватории ее систематические поиски, в результате которых молодой американский любитель астрономии открыл в 1930 г. искомую новую планету – Плутон.

Стремительными темпами развивалась не только классическая механика Ньютона. Этап классической физики характеризуется также крупными достижениями и в других отраслях физики: термодинамике, молекулярной физике, оптике, электричестве, магнетизме и т. п. Ограничимся перечислением некоторых наиболее важных достижений. Были установлены опытные газовые законы. Предложено уравнение кинетической теории газов. Сформулирован принцип равномерного распределения энергии по степеням свободы, первое и второе начала термодинамики. Открыты законы Кулона, Ома и электромагнитной индукции. Явления интерференции, дифракции и поляризации света получили волновое истолкование. Установлены законы поглощения и рассеивания света.

Конечно, можно было бы назвать и другие не менее важные достижения, среди которых особое место занимает электромагнитная теория, разработанная выдающимся английским физиком Джеймсом Клерком Максвеллом. Максвелл является не только создателем классической электродинамики, но и одним из основоположников статистической физики. Он установил статистическое распределение молекул по скоростям, названное его именем. Развивая идеи Майкла Фарадея (1791–1867), он создал теорию электромагнитного поля (уравнения Максвелла), которая не только объясняла многие известные к тому времени электромагнитные явления, но и предсказала электромагнитную природу света. С электромагнитной теорией Максвелла вряд ли можно поставить рядом другую более значительную в классической физике. Однако и теория Максвелла оказалась не всемогущей.

В конце прошлого столетия при изучении спектра излучения абсолютно черного тела была экспериментально установлена закономерность распределения энергии в спектре излучения. Экспериментальные кривые распределения имели характерный максимум, который по мере повышения температуры смещался в сторону более коротких волн. В рамках классической электродинамики Максвелла не удалось объяснить закономерность распределения энергии в спектре излучения абсолютно черного тела. Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости абсолютно черного тела было найдено в 1900 г. Максом Планком. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями – квантами, причем энергия кванта пропорциональна частоте колебания.

Характерная особенность третьего этапа развития физики – современного этапа – заключается в том, что наряду с классическими широко внедряются квантовые представления, на основании которых объясняются многие микропроцессы, происходящие в пределах атома, ядра и элементарных частиц, и в связи с которыми возникли новые отрасли современной физики: квантовая электродинамика, квантовая теория твердого тела, квантовая оптика и многие другие.

Хотя история физики как самостоятельной науки началась только в XVII веке, ее истоки относятся к самой глубокой древности, когда люди начали систематизировать первые свои знания об окружающем их мире. До Нового времени они относились к натуральной философии и включали в себя сведения о механике, астрономии и физиологии. Настоящая же история физики началась благодаря опытам Галилея и его учеников. Также фундамент этой дисциплины был заложен Ньютоном.

В XVIII и XIX столетии появились ключевые понятия: энергия, масса, атомы, импульс и т. д. В XX веке стала ясной ограниченность классической физики (помимо нее, зародилась квантовая физика, теория относительности, теория микрочастиц и т. д.). Естественнонаучные знания дополняются и сегодня, так как перед исследователями остается множество нерешенных проблем и вопросов о природе нашего мира и всей вселенной.

Древность

Многие языческие религии Древнего мира основывались на астрологии и знаниях звездочетов. Благодаря их исследованиям ночного неба произошло становление оптики. Накопление астрономических знаний не могло не повлиять на развитие математики. Однако теоретически объяснить причины природных явлений древние не могли. Жрецы приписывали молнии и солнечные затмения божественному гневу, что не имело ничего общего с наукой.

В то же время в Древнем Египте научились измерять длину, вес и угол. Эти знания были необходимы архитекторам при строительстве монументальных пирамид и храмов. Развивалась прикладная механика. Сильны в ней были и вавилоняне. Они же, основываясь на своих астрономических знаниях, стали использовать сутки для измерения времени.

Древнекитайская история физики началась в VII веке до н. э. Накопленный опыт в ремеслах и строительстве был подвергнут научному анализу, результаты которого были изложены в философских сочинениях. Самым известным их автором считается Мо-цзы, живший в IV столетии до н. э. Он предпринял первую попытку сформулировать основополагающий закон инерции. Уже тогда китайцы первыми изобрели компас. Они открыли законы геометрической оптики и знали о существовании камеры-обскуры. В Поднебесной появились зачатки теории музыки и акустики, о которых еще долгое время не подозревали на Западе.

Античность

Античная история физики больше всего известна благодаря греческим философам. Их исследования основывались на геометрических и алгебраических познаниях. Например, пифагорейцы первыми объявили о том, что природа подчиняется универсальным законам математики. Эту закономерность греки видели в оптике, астрономии, музыке, механике и других дисциплинах.

История развития физики с трудом представляется без трудов Аристотеля, Платона, Архимеда, Лукреция Кара и Герона. Их сочинения сохранились до наших времен в достаточно целостном виде. Греческие философы отличались от современников из других стран тем, что они объясняли физические законы не мифическими понятиями, а строго с научной точки зрения. В то же время у эллинов случались и крупные ошибки. К ним можно отнести механику Аристотеля. История развития физики как науки многим обязана мыслителям Эллады уже хотя бы тем, что их натурфилософия оставалась основой международной науки до XVII столетия.

Вклад александрийских греков

Демокрит сформулировал теорию атомов, согласно которой все тела состоят из неделимых и крохотных частиц. Эмпедокл предложил закон сохранения материи. Архимед заложил основы гидростатики и механики, изложив теорию рычага и подсчитав величину выталкивающей силы жидкости. Он же стал автором термина «центр тяжести».

Александрийский грек Герон считается одним из величайших инженеров в человеческой истории. Он создал паровую турбину, обобщил знания об упругости воздуха и сжимаемости газов. История развития физики и оптики продолжилась благодаря Евклиду, исследовавшему теорию зеркал и законы перспективы.

Средневековье

После падения Римской империи настал крах античной цивилизации. Многие знания были преданы забвению. Европа почти на тысячу лет остановилась в своем научном развитии. Храмами знаний стали христианские монастыри, которым удалось сохранить некоторые сочинения прошлого. Однако прогресс тормозила сама церковь. Она подчинила философию богословской доктрине. Мыслители, пытавшиеся выйти за ее пределы объявлялись еретиками и жестоко наказывались инквизицией.

На этом фоне первенство в естественных науках перешло к мусульманам. История возникновения физики у арабов связана с переводом на их язык трудов античных греческих ученых. На их основе мыслители востока сделали несколько собственных важных открытий. К примеру, изобретатель Аль-Джазири описал первый коленчатый вал.

Европейский застой продлился вплоть до Ренессанса. За Средние века в Старом Свете изобрели очки и объяснили возникновение радуги. Немецкий философ XV века Николай Кузанский первым предположил, что Вселенная бесконечна, и тем самым далеко опередил свое время. Через несколько десятилетий Леонардо да Винчи стал первооткрывателем явления капиллярности и закона трения. Также он пытался создать вечный двигатель, но не справившись с этой задачей, начал теоретически доказывать неосуществимость подобного проекта.

Ренессанс

В 1543 году польский астроном Николай Коперник опубликовал главный труд всей своей жизни «О вращении небесных тел». В этой книге впервые в христианском Старом Свете была произведена попытка защитить гелиоцентрическую модель мира, согласно которой Земля крутится вокруг Солнца, а не наоборот, как предполагала принятая церковью геоцентрическая модель Птолемея. Многие ученые физики и их открытия претендуют на звание великих, однако именно появление книги «О вращении небесных тел» считается началом научной революции, за которой последовало возникновение не только современной физики, но и современной науки в целом.

Другой знаменитый ученый Нового времени Галилео Галилей больше всего прославился изобретением телескопа (также ему принадлежит изобретение термометра). Кроме того, он сформулировал закон инерции и принцип относительности. Благодаря открытиям Галилея зародилась совершенно новая механика. Без него история изучения физики застопорилась бы еще на долгое время. Галилею, как и многим его широко мыслившим современникам, пришлось сопротивляться давлению церкви, из последних сил пытавшейся защитить старый порядок.

XVII столетие

Набравший ход рост интереса к науке продолжился и в XVII веке. Немецкий механик и математик стал первооткрывателем в Солнечной системе Свои взгляды он изложил в книге «Новая астрономия», изданной в 1609 году. Кеплер оппонировал Птолемею, заключив, что планеты движутся по эллипсам, а не по окружностям, как считалось еще в античности. Этот же ученый внес значительный вклад в развитие оптики. Он исследовал дальнозоркость и близорукость, выяснив физиологические функции хрусталика глаза. Кеплер ввел понятия оптической оси и фокуса, сформулировал теорию линз.

Француз Рене Декарт создал новую научную дисциплину - аналитическую геометрию. Также он предложил Главным трудом Декарта стала книга «Начала философии», изданная в 1644 году.

Немногие ученые-физики и их открытия известны так, как англичанин Исаак Ньютон. В 1687 году он написал революционную книгу «Математические начала натуральной философии». В ней исследователь изложил закон всемирного тяготения и три закона механики (также ставшие известными как Этот ученый работал над теорией цвета, оптикой, интегральными и дифференциальными исчислениями. История физики, история законов механики - все это тесно связано с открытиями Ньютона.

Новые рубежи

XVIII век подарил науке множество выдающихся имен. Особенно выделяется среди них Леонард Эйлер. Этот швейцарский механик и математик написал более 800 работ по физике и таким разделам, как математический анализ, небесная механика, оптика, теория музыки, баллистика и т. д. Петербургская академия наук признала его своим академиком, из-за чего Эйлер значительную часть жизни провел в России. Именно этот исследователь положил начало аналитической механике.

Интересно что история предмета физика сложилась такой, какой мы ее знаем, благодаря не только профессиональным ученым, но и исследователям-любителям, гораздо больше известным в совершенно другом качестве. Самым ярким примером такого самоучки стал американский политик Бенджамин Франклин. Он изобрел громоотвод, внес большой вклад в изучение электричества и сделал предположение о его связи с явлением магнетизма.

В конце XVIII столетия итальянец Алессандро Вольта создал «вольтов столб». Его изобретение стало первой электрической батарей в истории человечества. Этот век также ознаменовался появлением ртутного термометра, создателем которого был Габриэль Фаренгейт. Другим важным событием изобретательства оказалось изобретение паровой машины, произошедшее в 1784 году. Оно породило новые средства производства и перестройку промышленности.

Прикладные открытия

Если история начала физики развивалась исходя из того, что наука должна была объяснить причину природных явлений, то в XIX веке ситуация значительно изменилась. Теперь у нее появилось новое призвание. От физики стали требовать управления природными силами. В связи с этим стала ускоренно развиваться не только экспериментальная, но и прикладная физика. «Ньютон электричества» Андре-Мари Ампер ввел новое понятие электрического тока. В этой же области работал Майкл Фарадей. Он открыл явление электромагнитной индукции, законы электролиза, диамагнетизм и стал автором таких терминов, как анод, катод, диэлектрик, электролит, парамагнетизм, диамагнетизм и т. д.

Сложились новые разделы науки. Термодинамика, теория упругости, статистическая механика, статистическая физика, радиофизика, теория упругости, сейсмология, метеорология - все они формировали единую современную картину мира.

В XIX столетии возникли новые научные модели и понятия. обосновал закон сохранения энергии, Джеймс Клерк Максвелл предложил собственную электромагнитную теорию. Дмитрий Менделеев стал автором значительно повлиявшей на всю физику периодической системы элементов. Во второй половине века появилась электротехника и двигатель внутреннего сгорания. Они стали плодами прикладной физики, ориентированной на решение определенных технологических задач.

Переосмысление науки

В XX веке история физики, кратко говоря, перешла к тому этапу, когда наступил кризис уже устоявшихся классических теоретических моделей. Старые научные формулы начали противоречить новым данным. К примеру, исследователи выяснили, что скорость света не зависит от, казалось бы, незыблемой системы отсчета. На рубеже столетий были открыты требовавшие подробного объяснения явления: электроны, радиоактивность, рентгеновские лучи.

Вследствие накопившихся загадок произошел пересмотр старой классической физики. Ключевым событием в этой очередной научной революции стало обоснование теории относительности. Ее автором был Альберт Эйнштейн, впервые поведывавший миру о глубинной связи пространства и времени. Возник новый раздел теоретической физики - квантовая физика. В ее становлении приняли участие сразу несколько ученых с мировым именем: Макс Планк, Макс Бон, Пауль Эренфест и другие.

Современные вызовы

Во второй половине XX века история развития физики, хронология которой продолжается и сегодня, перешла на принципиально новый этап. Этот период ознаменовался расцветом исследования космоса. Небывалый скачок сделала астрофизика. Появились космические телескопы, межпланетные зонды, детекторы внеземных излучений. Началось детальное изучение физических данных различных тел Солнечной планеты. С помощью современной техники ученые обнаружили экзопланеты и новые светила, в том числе радиогалактики, пульсары и квазары.

Космос продолжает таить в себе множество неразгаданных загадок. Изучаются гравитационные волны, темная энергия, темная материя, ускорение расширения Вселенной и ее структура. Дополняется теория Большого взрыва. Данные, которые можно получить в земных условиях, несоизмеримо малы по сравнению с тем, сколько работы у ученых есть в космосе.

Ключевые проблемы, стоящие перед физиками сегодня, включают в себя несколько фундаментальных вызовов: разработку квантового варианта гравитационной теории, обобщение квантовой механики, объединение в одну теорию всех известных сил взаимодействия, поиск «тонкой настройки Вселенной», а также точное определение явления темной энергии и темной материи.

Физика – наука, которая изучает структуру и эволюцию мира, а также является основной и важной областью естествознания. Слово «фюзис» с греческого языка означает – природа. Основой всего естествознания и природы являются законы физики.

Уже в 4 веке Аристотель предал большое значение термину «физика». Масштабность мыслей казались самыми величественными. Казалось, что философия стала больше приближена к физике. Очень важный вопрос объединил их в одну стезю – законы возникновения и функционирования Вселенной. Правда, уже после того как наука стала больше доминировать, стали появляться отдельные подразделения физики.
В русский язык эта наука зашла лишь после появления учебников физики. Автором является – М.В. Ломоносов. Вот, что касается, отечественной учебной книги, то автором стал – Страхов. Подобный маневр русского академика изменил всю систему образования того времени.

В нашем веке физику все стали рассматривать каждый по – своему. Ведь, если подумать, то отличие современного общества от того что было ранее, напрямую зависит от физических открытий. Например, исследования электромагнетизма. Подобные прорывы в науке привели к возникновению телефона. Так, если завести речь об автомобиле, то он возник благодаря термодинамике. Компьютер возник вследствие развития электроники.

Подобные процессы не стоят на месте, а лишь усовершенствуются. Новые открытия способствуют улучшению промышленности и техники. Следует задуматься о новых загадках природы, которые требуют объяснения. В этом поможет – физика.

Конечно, не смотря на то, что наука зашла слишком далеко, невозможно объяснить с первого раза все явления природы. Основы физических исследований и методов разрабатываются тщательно, исходя из накопленных знаний.

Существует: экспериментальная и теоретическая физика. Если рассмотреть экспериментальную, то теории и законы опираются только на данные после исследований.

Теоретическая физика обладает несколькими задачами. Любая теория обладает возможностью рассмотреть на экспериментах всю суть «адекватности» явлений. Любое изучение физики несет в себе возможность расшифровать формулировку разнообразных систем.

Области физики многогранны и тем самым интересны. При классической механике верным будет решение, если атомы меньше чем размеры исследуемых объектов. Важно, чтобы гравитационные силы были малы и чтобы скорость объектов была меньше скорости света.

Выбор редакции
Незнакомец, советуем тебе читать сказку "Каша из топора" самому и своим деткам, это замечательное произведение созданное нашими предками....

У пословиц и поговорок может быть большое количество значений. А раз так, то они располагают к исследованиям большим и малым. Наше -...

© Зощенко М. М., наследники, 2009© Андреев А. С., иллюстрации, 2011© ООО «Издательство АСТ», 2014* * *Смешные рассказыПоказательный...

Флавий Феодосий II Младший (тж. Малый, Юнейший; 10 апр. 401 г. - † 28 июля 450 г.) - император Восточной Римской империи (Византии) в...
В тревожный и непростой XII век Грузией правила царица Тамара . Царицей эту великую женщину называем мы, русскоговорящие жители планеты....
Житие сщмч. Петра (Зверева), архиепископа ВоронежскогоСвященномученик Петр, архиепископ Воронежский родился 18 февраля 1878 года в Москве...
АПОСТОЛ ИУДА ИСКАРИОТ Апостол Иуда ИскариотСамая трагическая и незаслуженно оскорбленная фигура из окружения Иисуса. Иуда изображён в...
Когнитивная психотерапия в варианте Бека - это структурированное обучение, эксперимент, тренировки в ментальном и поведенческом планах,...
Мир сновидений настолько многогранен, что никогда не знаешь, что же появится в следующем сне. Порой сны бывают устрашающие, приводящие к...