Как иначе называют метод хорд. Численные методы


3. Метод хорд

Пусть дано уравнение f(x) = 0, где f(x) - непрерывная функция, имеющая в интервале (a, b) производные первого и второго порядков. Корень считается отделенным и находится на отрезке .

Идея метода хорд состоит в том, что на достаточно малом промежутке дугу кривой y = f(x) можно заменить хордой и в качестве приближенного значения корня принять точку пересечения с осью абсцисс. Рассмотрим случай (рис. 1), когда первая и вторая производные имеют одинаковые знаки, т.е. f "(x)f ²(x) > 0. Тогда уравнение хорды, проходящей через точки A0 и B, имеет вид

Приближение корня x = x1, для которого y = 0, определяется как


.

Аналогично для хорды, проходящей через точки A1 и B, вычисляется следующее приближение корня

.

В общем случае формула метода хорд имеет вид:

. (2)

Если первая и вторая производные имеют разные знаки, т.е.

f "(x)f "(x) < 0,

то все приближения к корню x* выполняются со стороны правой границы отрезка , как это показано на рис. 2, и вычисляются по формуле:

. (3)

Выбор формулы в каждом конкретном случае зависит от вида функции f(x) и осуществляется по правилу: неподвижной является граница отрезка изоляции корня, для которой знак функции совпадает со знаком второй производной. Формула (2) используется в том случае, когда f(b)f "(b) > 0. Если справедливо неравенство f(a)f "(a) > 0, то целесообразно применять формулу (3).


Рис. 1 Рис. 2

Рис. 3 Рис. 4

Итерационный процесс метода хорд продолжается до тех пор, пока не будет получен приближенный корень с заданной степенью точности. При оценке погрешности приближения можно пользоваться соотношением:

.

Тогда условие завершения вычислений записывается в виде:

где e - заданная погрешность вычислений. Необходимо отметить, что при отыскании корня метод хорд нередко обеспечивает более быструю сходимость, чем метод половинного деления.

4. Метод Ньютона (касательных)

Пусть уравнение (1) имеет корень на отрезке , причем f "(x) и f "(x) непрерывны и сохраняют постоянные знаки на всем интервале .

Геометрический смысл метода Ньютона состоит в том, что дуга кривой y = f(x) заменяется касательной. Для этого выбирается некоторое начальное приближение корня x0 на интервале и проводится касательная в точке C0(x0, f(x0)) к кривой y = f(x) до пересечения с осью абсцисс (рис. 3). Уравнение касательной в точке C0 имеет вид

Затем проводится касательная через новую точку C1(x1, f(x1)) и определяется точка x2 ее пересечения с осью 0x и т.д. В общем случае формула метода касательных имеет вид:

В результате вычислений получается последовательность приближенных значений x1, x2, ..., xi, ..., каждый последующий член которой ближе к корню x*, чем предыдущий. Итерационный процесс обычно прекращается при выполнении условия (4).

Начальное приближение x0 должно удовлетворять условию:

f(x0) f ¢¢(x0) > 0. (6)

В противном случае сходимость метода Ньютона не гарантируется, так как касательная будет пересекать ось абсцисс в точке, не принадлежащей отрезку . На практике в качестве начального приближения корня x0, обычно выбирается одна из границ интервала , т.е. x0 = a или x0 = b, для которой знак функции совпадает со знаком второй производной.

Метод Ньютона обеспечивает высокую скорость сходимости при решении уравнений, для которых значение модуля производной ½f ¢(x)½вблизи корня достаточно велико, т.е. график функции y = f(x) в окрестности корня имеет большую крутизну. Если кривая y = f(x) в интервале почти горизонтальна, то применять метод касательных не рекомендуется.

Существенным недостатком рассмотренного метода является необходимость вычисления производных функции для организации итерационного процесса. Если значение f ¢(x) мало изменяется на интервале , то для упрощения вычислений можно пользоваться формулой

, (7)

т.е. значение производной достаточно вычислить только один раз в начальной точке. Геометрически это означает, что касательные в точках Ci(xi, f(xi)), где i = 1, 2, ..., заменяется прямыми, параллельными касательной, проведенной к кривой y = f(x) в начальной точке C0(x0, f(x0)), как это показано на рис. 4.

В заключение необходимо отметить, что все изложенное справедливо в том случае, когда начальное приближение x0 выбрано достаточно близким к истинному корню x* уравнения. Однако это не всегда просто осуществимо. Поэтому метод Ньютона часто используется на завершающей стадии решения уравнений после работы какого-либо надежно сходящегося алгоритма, например, метода половинного деления.

5. Метод простой итерации

Чтобы применить этот метод для решения уравнения (1) необходимо преобразовать его к виду . Далее выбирается начальное приближение и вычисляется x1, затем x2 и т.д.:

x1 = j(x0); x2 = j(x1); …; xk = j(xk-1); ...

нелинейный алгебраический уравнение корень

Полученная последовательность сходится к корню при выполнении следующих условий:

1) функция j(x) дифференцируема на интервале .

2) во всех точках этого интервала j¢(x) удовлетворяет неравенству:

0 £ q £ 1. (8)

При таких условиях скорость сходимости является линейной, а итерации следует выполнять до тех пор, пока не станет справедливым условие:

.

Критерий вида


может использоваться только при 0 £ q £ ½. Иначе итерации заканчиваются преждевременно, не обеспечивая заданную точность. Если вычисление q затруднительно, то можно использовать критерий окончания вида

; .

Возможны различные способы преобразования уравнения (1) к виду . Следует выбирать такой, который удовлетворяет условию (8), что порождает сходящийся итерационный процесс, как, например, это показано на рис. 5, 6. В противном случае, в частности, при ½j¢(x)½>1, итерационный процесс расходится и не позволяет получить решение (рис. 7).

Рис. 5

Рис. 6

Рис. 7

Заключение

Проблема повышения качества вычислений нелинейных уравнений при помощи разнообразных методов, как несоответствие между желаемым и действительным, существует и будет существовать в дальнейшем. Ее решению будет содействовать развитие информационных технологий, которое заключается как в совершенствовании методов организации информационных процессов, так и их реализации с помощью конкретных инструментов – сред и языков программирования.


Список использованных источников

1. Алексеев В. Е., Ваулин А.С., Петрова Г. Б. - Вычислительная техника и программирование. Практикум по программированию:Практ.пособие/ -М.: Высш. шк. , 1991. - 400 с.

2. Абрамов С.А., Зима Е.В. - Начала программирования на языке Паскаль. - М.: Наука, 1987. -112 с.

3. Вычислительная техника и программирование: Учеб. для техн. вузов/ А.В. Петров, В.Е. Алексеев, А.С. Ваулин и др. - М.: Высш. шк., 1990 - 479 с.

4. Гусев В.А., Мордкович А.Г. - Математика: Справ. материалы: Кн. для учащихся. - 2-е изд. - М.: Просвещение, 1990. - 416 с.



Точке приближенного решения, т. е. Последовательные приближения (4) строятся по формулам: , (9) где – начальное приближение к точному решению. 4.5 Метод Зейделя на основе линеаризованного уравнения Итерационная формула для построения приближенного решения нелинейного уравнения (2) на основе линеаризованного уравнения (7) имеет вид: 4.6 Метод наискорейшего спуска Методы...

Метод хорд (метод также известен как Метод секущих ) один из методов решения нелинейных уравнений и основан на последовательном сужении интервала, содержащего единственный корень уравнения . Итерационный процесс выполняется до того момента, пока не будет достигнута заданная точность .

В отличие от метода половинного деления, метод хорд предлагает, что деление рассматриваемого интервала будет выполняться не в его середине, а в точке пересечения хорды с осью абсцисс (ось - Х). Следует отметить, что под хордой понимается отрезок, который проведен через точки рассматриваемой функции по концам рассматриваемого интервала. Рассматриваемый метод обеспечивает более быстрое нахождение корня, чем метод половинного деления, при условии задания одинакового рассматриваемого интервала.

Геометрически метод хорд эквивалентен замене кривой хордой, проходящей через точки и (см. рис.1.).

Рис.1. Построение отрезка (хорды) к функции .

Уравнение прямой (хорды), которая проходит через точки А и В имеет следующий вид:

Данное уравнение является типовым уравнением для описания прямой вы декартовой системе координат. Наклон кривой задается по ординате и абсциссе с помощью значений в знаменателе и , соответственно.

Для точки пресечения прямой с осью абсцисс записанное выше уравнение перепишется в следующем виде:

В качестве нового интервала для прохождения итерационного процесса выбираем один из двух или , на концах которого функция принимает значения разных знаков. Противоположность знаков значений функции на концах отрезка можно определить множеством способов. Один из множества этих способов - умножение значений функции на концах отрезка и определение знака произведения путём сравнения результата умножения с нулём:

или .

Итерационный процесс уточнения корня заканчивается, когда условие близости двух последовательных приближений станет меньше заданной точности, т.е.

Рис.2. Пояснение к определению погрешности расчета.

Следует отметить, что сходимость метода хорд линейная, однако более быстрая, чем сходимость метода половинного деления.

Алгоритм нахождения корня нелинейного уравнения по методу хорд

1. Найти начальный интервал неопределенности одним из методов отделения корней. З адать погрешность расчета (малое положительное число ) и начальный шаг итерации () .

2. Найти точку пересечения хорды с осью абсцисс:

3. Необходимо найти значение функции в точках , и . Далее необходимо проверить два условия:

Если выполняется условие , то искомый корень находится внутри левого отрезка положить, ;

Если выполняется условие , то искомый корень находится внутри правого отрезка принять , .

В результате находится новый интервал неопределенности, на котором находится искомых корень уравнения:

4. Проверяем приближенное значение корня уравнения на предмет заданной точности, в случае:

Если разность двух последовательных приближений станет меньше заданной точности , то итерационный процесс заканчивается. Приближенное значение корня определяется по формуле:

Если разность двух последовательных приближений не достигает необходимой точности , то необходимо продолжить итерационный процесс и перейти к п.2 рассматриваемого алгоритма.

Пример решения уравнений методом хорд

В качестве примера, рассмотрим решение нелинейного уравнения методом хорд. Корень необходимо найти в рассматриваемом диапазоне с точностью .

Вариант решения нелинейного уравнения в программном комплексе MathCAD .

Результаты расчетов, а именно динамика изменения приближенного значения корня, а также погрешности расчета от шага итерации представлены в графической форме (см. рис.1).

Рис.1. Результаты расчета по методу хорд

Для обеспечения заданной точности при поиске уравнения в диапазоне необходимо выполнить 6 итераций. На последнем шаге итерации приближенное значение корня нелинейного уравнения будет определяться значением: .

Примечание:

Модификацией данного метода является метод ложного положения (False Position Method ), который отличается от метода секущих только тем, что всякий раз берутся не последние 2 точки, а те точки, которые находятся вокруг корня.

Следует отметить, что в случае если от нелинейной функции можно взять вторую производную алгоритм поиска может быть упрощен. Предположим, что вторая производная сохраняет постоянный знак, и рассмотрим два случая:

Случай №1:

Из первого условия получается, что неподвижной стороной отрезка является – сторона a .

Случай №2:

Наименование параметра Значение
Тема статьи: Метод хорд.
Рубрика (тематическая категория) Математика

Метод хорд - один из распространенных итерационных методов. Его еще называют методом линœейного интерполирования, методом пропорциональных частей.

Идея метода хорд в том, что на достаточно малом отрезке дуга кривой у =f (x) заменяется хордой и абсцисса точки пересечения хорды с осью Ox является приближенным значением корня.

Рисунок 2 – Геометрическая интерпретация метода Ньютона.

Пусть для определœенности f" (х)> 0, f"" (x) >0, f (а) <0, f (b)> 0 (рис. 3, а). Возьмем за начальное приближение искомого корня х* значения х 0 =а. Через точки а 0 и В проведем хорду и за первое приближение корня х* возьмем абсциссу x 1 точки пересечения хорды с осью ОХ. Теперь приближенное значение х 1 корня можно уточнить если применить метод хорд на отрезке [х 1 ; b ]. Абсцисса х 2 точки пересечения хордыА 1 В будет другим приближением корня. Продолжая данный процесс далее, получим последовательность х 0 , х 1 , х 2 ,..., х k , ... приближенных значений корня х* данного уравнения.

Таким образом метод хорд можно записать так:

, k=0, 1.2, …, (8)

В общем случае неподвижным будет тот конец отрезка изолированного корня, в которой знак функции f(х) совпадает со знаком второй производной, а за начальное приближение x 0 можно взять точку отрезка [а; b ], в которой f(x 0)×f"’(x 0) < 0.

К примеру, когда f (a) >0, f (b) <0, f"(х)< 0, f"(х)< 0 (рис. .3, б) конец b отрезка [а; b ] является неподвижным.

В случае если f (а)>0, f (b)< 0, f" (х)< 0, f"(x) >0 (рис.3, в), или f (а) <0, f (b) >0, f’ (х) >0, f"’ (x) <0 (рис. 3, г), точка а является неподвижным концом отрезка [а; b ].

Достаточные условия сходимости метода хорд дает такая теорема.

Рисунок 3. – Геометрическая интерпретация метода хорд

Теорема. Пусть на отрезке [а; b ] функция f (х) непрерывна вместе со своими производными второго порядка включительно, причем f(a)×f(b)<0, а производные f" (x) и f" (х) сохраняют свои знаки на [а; b ], тогда существует такая окружность корня х* уравнения f (x) =0, что для любого начального приближения х 0 этой окружности последовательность {х k }, вычисленная по формуле (8), сходится к корню х*.

Метод хорд. - понятие и виды. Классификация и особенности категории "Метод хорд." 2017, 2018.

  • - Метод хорд

    Пусть 1) функция y=F(x) определена и непрерывна на отрезке . 2) F(a)F(b)<0 Требуется найти корень на отрезке с точностью &... .


  • - МЕТОД ХОРД

    При дифференцировании этим методом отмечают ряд точек на вычерченной кривой графика функции, которые соединяют хордами, т.е. заменяют заданную кривую ломаной линией (Рис.2). Принимают следующее допущение: угол наклона касательных в точках, расположенных посередине... .


  • - Метод хорд

    В некоторых случаях несколько большей скоростью сходимости обладает метод хорд, у которого на втором этапе при выборе очередного приближения внутри отрезка, содержащего корень, учитывается величина невязки на концах отрезка: точка выбирается ближе к тому концу, где... .


  • - Метод хорд.

    Идея метода проиллюстрирована рисунком. Задается интервал , на котором f(x0)f(x1) &... .


  • - Метод хорд

    В данном методе в качестве приближения выбирается не середина отрезка, а точка пересечения хорды с осью абсцисс. Уравнение хорды АВ, соединяющей концы отрезка: (1) Точка пересечения с осью абсцисс имеет координаты, подставим в (1) и найдем (2). Сравниваем знаки и... .


  • - Комбинированный метод хорд и касательных

    Если и - приближенные значения корня по недостатку и избытку. 1. Если на, то, при этом. 2. Если на, то, при этом. Пример. Отделить корни аналитически и уточнить их комбинированным методом хорд и касательных с точностью до 0,001. , следовательно, для вычислений...

  • Рассматриваемый метод так же, как и метод половинного деления, предназначен для уточнения корня на интервале

    принимает значения разных знаков. Очередное приближение в отличие от метода половинного деления берем не в середине отрезка, а в точке , где пересекает ось абсцисс прямая линия (хорда), проведенная через точкиА иВ (рис. 2.6).

    Запишем уравнение прямой, проходящей через точки А иВ :

    .

    Для точки пересечения прямой с осью абсцисс (
    ) получим уравнение

    . (2.13)

    В качестве нового интервала для продолжения итерационного процесса выбираем тот из двух
    и
    , на концах которого функция
    принимает значения разных знаков. Для рассматриваемого случая (рис. 2.6) выбираем отрезок
    , так как
    . Следующая итерация состоит в определении нового приближения как точки пересечения хорды
    с осью абсцисс и т.д.

    Заканчиваем процесс уточнения корня, когда расстояние между очередными приближениями станет меньше заданной точности, т.е.

    (2.14)

    или при выполнении условия (2.12).

    ØЗамечание. Метод половинного деления и метод хорд очень похожи, в частности, процедурой проверки знаков функции на концах отрезка. При этом второй их них в ряде случаев дает более быструю сходимость итерационного процесса. Однако в некоторых случаях метод хорд может сходится существенно медленнее метода половинного деления. Такая ситуация показана на рис. 2.7. Оба рассмотренных метода не требуют знания дополнительной информации о функции
    . Например, не требуется, чтобы функция была дифференцируема. Даже для разрывных функций рассмотренные методы обладают гарантированной сходимостью. Более сложные методы уточнения корня используют дополнительную информацию о функции
    , прежде всего свойство дифференцируемости. Как результат они обычно обладают более быстрой сходимостью, но в то же время, применимы для более узкого класса функций, и их сходимость не всегда гарантирована. Примером такого метода служит метод Ньютона.<

    1. Метод Ньютона (метод касательных)

    Пусть нам известно начальное приближение к корню (вопрос выбора начального приближение будет подробно рассмотрен ниже). Проведем в этой точке касательную к кривой
    (рис. 2.8). Эта касательная пересечет ось абсцисс в точке , которую будем рассматривать в качестве следующего приближения. Значение легко найти из рисунка:

    ,

    выражая отсюда , получим

    .

    Аналогично могут быть найдены и следующие приближения. Формула для k +1-го приближения имеет вид

    ,
    (2.15)

    Из формулы (2.15) вытекает условие применимости метода: функция
    должна быть дифференцируемой и
    в окрестности корня не должна менять знак.

    Для окончания итерационного процесса могут быть использованы условия (2.12) или (2.14).

    ØЗамечание 1. В методе Ньютона, в отличие от предыдущих методов, не обязательно задавать отрезок
    , содержащий корень уравнения, а достаточно найти некоторое начальное приближение корня .<

    ØЗамечание 2. Формула метода Ньютона может быть получена и из других соображений. Зададимся некоторым начальным приближением корня
    . Заменим функциюf (x ) в окрестности точки отрезком ряда Тейлора:

    и вместо нелинейного уравнения
    решим линеаризованное уравнение

    рассматривая его решение как следующее (первое) приближение к искомому значению корня. Решение этого уравнение очевидно:

    Повторяя это процесс приходим к формуле Ньютона (2.15).<

    Сходимость метода Ньютона . Выясним основные условия сходимости последовательности значений
    , вычисляемых по формуле (2.15), к корню уравнения (2.1). Предполагая, что
    дважды непрерывно дифференцируема, разложим
    в ряд Тейлора в окрестностиk -го приближения

    Разделив последнее соотношение на
    и перенеся часть слагаемых из левой части в правую, получим:

    .

    Учитывая, что выражение в квадратных скобках согласно (2.15) равно
    , переписываем это соотношение в виде

    .

    . (2.16)

    Из (2.16) следует оценка

    , (2.17)

    где
    ,
    .

    Очевидно, что ошибка убывает, если

    . (2.18)

    Полученное условие означает, что сходимость зависит от выбора начального приближения.

    Оценка (2.17) характеризует скорость убывания погрешности для метода Ньютона: на каждом шаге погрешность пропорциональна квадрату погрешности на предыдущем шаге. Следовательно, метод Ньютона обладает квадратичной сходимостью.

    Выбор начального приближения в методе Ньютона. Как следует из условия (2.18) сходимость итерационной последовательности, получаемой в методе Ньютона, зависит от выбора начального приближения . Это можно заметить и из геометрической интерпретации метода. Так, если в качестве начального приближения взять точку (рис. 2.9), то на сходимость итерационного процесса рассчитывать не приходится.

    Если же в качестве начального приближения выбрать точку , то получим сходящуюся последовательность.

    В общем случае, если задан отрезок
    , содержащий корень, и известно, что функция
    монотонна на этом отрезке, то в качестве начального приближения можно выбрать ту границу отрезка
    , где совпадают знаки функции
    и второй производной
    . Такой выбор начального приближения гарантирует сходимость метода Ньютона при условии монотонности функции на отрезке локализации корня.

    Выбор редакции
    Незнакомец, советуем тебе читать сказку "Каша из топора" самому и своим деткам, это замечательное произведение созданное нашими предками....

    У пословиц и поговорок может быть большое количество значений. А раз так, то они располагают к исследованиям большим и малым. Наше -...

    © Зощенко М. М., наследники, 2009© Андреев А. С., иллюстрации, 2011© ООО «Издательство АСТ», 2014* * *Смешные рассказыПоказательный...

    Флавий Феодосий II Младший (тж. Малый, Юнейший; 10 апр. 401 г. - † 28 июля 450 г.) - император Восточной Римской империи (Византии) в...
    В тревожный и непростой XII век Грузией правила царица Тамара . Царицей эту великую женщину называем мы, русскоговорящие жители планеты....
    Житие сщмч. Петра (Зверева), архиепископа ВоронежскогоСвященномученик Петр, архиепископ Воронежский родился 18 февраля 1878 года в Москве...
    АПОСТОЛ ИУДА ИСКАРИОТ Апостол Иуда ИскариотСамая трагическая и незаслуженно оскорбленная фигура из окружения Иисуса. Иуда изображён в...
    Когнитивная психотерапия в варианте Бека - это структурированное обучение, эксперимент, тренировки в ментальном и поведенческом планах,...
    Мир сновидений настолько многогранен, что никогда не знаешь, что же появится в следующем сне. Порой сны бывают устрашающие, приводящие к...