Как сложить десятичные дроби с разными знаками. Сложение чисел с разными знаками, правило, примеры


На этом уроке мы узнаем, что такое отрицательное число и какие числа называются противоположными. Также научимся складывать отрицательные и положительные числа (числа с разными знаками) и разберём несколько примеров сложения чисел с разными знаками.

Посмотрите на эту шестеренку (см. рис. 1).

Рис. 1. Шестеренка часов

Это не стрелка, которая непосредственно показывает время и не циферблат (см. рис. 2). Но без этой детали часы не работают.

Рис. 2. Шестеренка внутри часов

А что обозначает буква Ы? Ничего, кроме звука Ы. Но без нее не будут «работать» многие слова. Например, слово «мЫшь». Так и отрицательные числа: они не показывают никакого количества, но без них механизм вычислений был бы существенно труднее.

Мы знаем, что сложение и вычитание равноправные операции, и их можно выполнять в любом порядке. В записи в прямом порядке мы можем посчитать: , а начать с вычитания нет, так как мы не договорились еще, а что же такое .

Понятно, что увеличить число на , а потом уменьшить на означает в итоге уменьшение на три. Почему бы так и не обозначить этот объект и так и считать: прибавить - значит вычесть . Тогда .

Число может означать, например, яблока. Новое число не обозначает никакого реального количества. Само по себе оно ничего не означает, как буква Ы. Это просто новый инструмент для упрощения вычислений.

Назовем новые числа отрицательными . Теперь мы можем вычитать из меньшего числа большее. Технически всё равно нужно вычесть из большего числа меньшего, но в ответе поставить знак минус: .

Рассмотрим ещё один пример: . Можно сделать все действия подряд: .

Однако из первого числа легче вычесть третье, а потом прибавить второе число:

Отрицательные числа можно определить и по-другому.

Для каждого натурального числа, например , введем новое число, которое обозначим , и определим, что оно обладает следующим свойством: сумма числа и равна : .

Число будем называть отрицательным, а числа и - противоположными. Таким образом, мы получили бесконечное количество новых чисел, например:

Противоположное для числа ;

Противоположное числу ;

Противоположное числу ;

Противоположное числу ;

Вычтем из меньшего числа большее: . Прибавим к данному выражению : . Получили ноль. Однако согласно свойству: число, которое в сумме с пятью дает ноль, обозначается минус пять : . Следовательно, выражение можно обозначить как .

У каждого положительного числа существует число-близнец, которое отличается только тем, что перед ним стоит знак минус Такие числа называются противоположными (см. рис. 3).

Рис. 3. Примеры противоположных чисел

Свойства противоположных чисел

1. Сумма противоположных чисел равна нулю: .

2. Если из нуля вычесть положительное число, то результатом будет противоположное отрицательное число: .

1. Оба числа могут быть положительными, и складывать их мы уже умеем: .

2. Оба числа могут быть отрицательными.

Мы уже прошли сложение таких чисел на предыдущем уроке, но убедимся, что понимаем, что с ними делать. Например: .

Чтобы эту сумму найти, складываем противоположные положительные числа и и ставим знак минус.

3. Одно число может быть положительным, а другое - отрицательным.

Прибавление отрицательного числа мы, если это нам удобно, можем заменять на вычитание положительного: .

Ещё один пример: . Опять сумму записываем как разность. Вычесть из меньшего большее число можно, вычитая из большего меньшее, но поставив знак минус.

Слагаемые можем менять местами: .

Ещё один аналогичный пример: .

Во всех случаях в итоге получается вычитание.

Чтобы коротко сформулировать эти правила, давайте вспомним еще один термин. Противоположные числа, конечно, не равны друг другу. Но было бы странно не заметить у них общего. Это общее мы назвали модулем числа . Модуль у противоположных чисел одинаковый: у положительного числа он равен самому числу, а у отрицательного - противоположному, положительному. Например: , .

Чтобы сложить два отрицательных числа, нужно сложить их модули и поставить знак минус:

Чтобы сложить отрицательное и положительное число, нужно из большего модуля вычесть меньший модуль и поставить знак числа с большим модулем:

Оба числа отрицательные, следовательно, складываем их модули и ставим знак минус:

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак минус (знак числа с большим модулем):

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак минус (знак числа с большим модулем): .

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак плюс (знак числа с большим модулем): .

У положительных и отрицательных чисел исторически разная роль.

Сначала мы ввели натуральные числа для счета предметов:

Потом мы ввели другие положительные числа - дроби, для счета нецелых количеств, частей: .

Отрицательные же числа появились как инструмент для упрощения расчетов. Не было такого, чтобы в жизни были какие-то количества, которые нам было не посчитать, и мы изобрели отрицательные числа.

То есть отрицательные числа не возникли из реального мира. Просто они оказались настолько удобными, что кое-где им нашлось применение и в жизни. Например, мы часто слышим про отрицательную температуру. При этом мы никогда не сталкиваемся с отрицательным количеством яблок. В чем же разница?

Разница в том, что в жизни отрицательные величины используют только для сравнения, но не для количеств. Если в гостинице оборудовали подвал и туда пустили лифт, то, чтобы оставить привычную нумерацию обычных этажей, может появиться минус первый этаж. Этот минус первый означает всего лишь на этаж ниже уровня земли (см. рис. 1).

Рис. 4. Минус первый и минус второй этажи

Отрицательная температура отрицательна только по сравнению с нулем, который выбрал автор шкалы Андерс Цельсий. Есть другие шкалы, и та же самая температура уже может не быть там отрицательной.

При этом мы понимаем, что невозможно поменять точку отсчета так, чтобы яблок стало не пять, а шесть. Таким образом, в жизни положительные числа используются для определения количеств ( яблок, торта).

Еще мы их используем вместо имен. Каждому телефону можно было бы дать свое имя, но количество имен ограничено, а чисел нет. Поэтому мы используем номера для телефонов. Также для упорядочивания ( век идет за веком).

Отрицательные числа в жизни используются в последнем смысле (минус первый этаж ниже нулевого и первого этажей)

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. «Гимназия», 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6 классов заочной школы МИФИ. М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. М.: Просвещение, Библиотека учителя математики, 1989.
  1. Math-prosto.ru ().
  2. Youtube ().
  3. School-assistant.ru ().
  4. Allforchildren.ru ().

Домашнее задание

Задача 1. Игрок записывал выигрыш знаком + и проигрыш знаком –. Найти результат каждой из следующих записей: a) +7 руб. +4 руб.; b) –3 руб. –6 руб.; c) –4 р. +4 р.; d) +8 р. –6 р.; e) –11 р. +7 р.; f) +2 р. +3 р. –5 р.; g) +6 р. –4 р. +3 р. –5 р. +2 р. –6 р.

Запись a) указывает, что игрок сначала выиграл 7 руб. и затем еще выиграл 4 р., – итого выиграл 11 р.; запись c) указывает, что сначала игрок проиграл 4 р. и затем выиграл 4 р., – потому общий результат = 0 (игрок ничего не сделал); запись e) указывает, что игрок сначала проиграл 11 руб., потом выиграл 7 руб., – проигрыш пересиливает выигрыш на 4 руб.; следовательно, в общем, игрок проиграл 4 руб. Итак, имеем право для этих записей записать, что

a) +7 р. +4 р. = +11 р.; c) –4 р. +4 р. = 0; e) –11 р. + 7 р. = –4 руб.

Так же легко разбираются и остальные записи.

По своему смыслу эти задачи сходны с теми, которые в арифметике решаются с помощью действия сложения, поэтому и здесь мы станем считать, что везде приходится для нахождения общего результата игры складывать относительные числа, выражающие результаты отдельных игр, например, в примере c) относительное число –11 руб. складывается с относительным числом +7 руб.

Задача 2. Кассир записывал приход кассы знаком +, а расход знаком –. Найти общий результат каждой из следующих записей: a) +16 р. +24 р.; b) –17 р. –48 р.; c) +26 р. –26 р.; d) –24 р. +56 р.; e) –24 р. +6 р.; f) –3 р. +25 р. –20 р. +35 р.; g) +17 р. –11 р. +14 р. –9 р. –18 р. +7 р.; h) –9 р –7 р. +15 р. –11 р. +4 р.

Разберем, напр., запись f): сосчитаем сперва весь приход кассы: по этой записи было 25 руб. приходу, да еще 35 руб. приходи, итого приходу было 60 руб., а расходу было 3 руб., да еще 20 руб., итого было 23 руб. расходу; приход превышает расход на 37 руб. След.,

– 3 руб. + 25 руб. – 20 руб. + 35 руб. = +37 руб.

Задача 3. Точка колеблется по прямой, начиная от точки A (черт. 2).

Черт. 2.

Перемещение ее вправо обозначаем знаком + и перемещение ее влево знаком –. Где будет находиться точка после нескольких колебаний, записанных одною из следующих записей: a) +2 дм. –3 дм. +4 дм.; b) –1 дм. +2 дм. +3 дм. +4 дм. –5 дм. +3 дм.; c) +10 дм. –1 дм. +8 дм. –2 дм. +6 дм. –3 дм. +4 дм. –5 дм.; d) –4 дм. +1 дм. –6 дм. +3 дм. –8 дм. +5 дм.; e) +5 дм. –6 дм. +8 дм. –11 дм. На чертеже дюймы обозначены отрезками, меньшими настоящих.

Последнюю запись (e) разберем: сначала колеблющаяся точка передвинулась вправо от A на 5 дм., потом передвинулась влево на 6 дм., – в общем, она должна оказаться находящеюся влево от A на 1 дм., потом подвинулась вправо на 8 дюйм., след., теперь она находится вправо от A на 7 дм., а затем подвинулась влево на 11 дм., следовательно, она находится влево от A на 4 дм.

Остальные примеры предоставляем разобрать самим учащимся.

Мы приняли, что во всех разобранных записях приходится складывать записанные относительные числа. Поэтому условимся:

Если несколько относительных чисел написаны рядом (с их знаками), то эти числа надо сложить.

Разберем теперь главные случаи, встречающиеся при сложении, причем возьмем относительные числа без названий (т. е. вместо того, чтобы говорить, напр., 5 руб. выигрышу, да еще 3 руб. проигрышу, или точка переместилась на 5 дм. вправо от A, да потом еще на 3 дм. Влево, станем говорить 5 положительных единиц, да еще 3 отрицательных единиц …).

Здесь надо сложить числа, состоящие из 8 полож. единиц, да еще из 5 полож. единиц, получим число, состоящее из 13 полож. единиц.

Итак, + 8 + 5 = 13

Здесь надо сложить число, состоящее из 6 отрицат. единиц с числом, состоящим из 9 отрицат. единиц, получим 15 отрицат. единиц (сравнить: 6 рублей проигрыша и 9 руб. проигрыша – составят 15 руб. проигрыша). Итак,

– 6 – 9 = – 15.

4 рубля выигрыша да затем 4 руб. проигрыша, в общем, дадут нуль (взаимно уничтожается); также, если точка продвинулась от A сначала вправо на 4 дм., а потом влево на 4 дм., то она окажется опять в точке A и, след., окончательное ее расстояние от A равно нулю, и вообще мы должны считать, что 4 полож. единицы, да еще 4 отрицательных единицы, в общем, дадут нуль, или взаимно уничтожатся. Итак,

4 – 4 = 0, также – 6 + 6 = 0 и т. д.

Два относительных числа, имеющие одинаковую абсолютную величину, но различные знаки, взаимно уничтожаются.

6 отрицат. единиц уничтожатся с 6 положит. единицами, да еще останется 3 полож. единицы. Итак,

– 6 + 9 = + 3.

7 полож. единиц уничтожатся с 7 отрицат. единицами, да еще останется 4 отрицат. единицы. Итак,

7 – 11 = – 4.

Рассматривая 1), 2), 4) и 5) случаи, имеем

8 + 5 = + 13; – 6 – 9 = – 15; – 6 + 9 = + 3 и
+ 7 – 11 = – 4.

Отсюда видим, что надо различать два случая сложения алгебраических чисел: случай, когда слагаемые имеют одинаковые знаки (1-й и 2-й) и случай сложения чисел с разными знаками (4-й и 5-й).

Не трудно теперь увидать, что

при сложении чисел с одинаковыми знаками следует сложить их абсолютные величины и написать их общий знак, а при сложении двух чисел с разными знаками надо вычесть арифметически их абсолютные величины (из большей меньшую) и написать знак того числа, у которого абсолютная величина больше.

Пусть требуется найти сумму

6 – 7 – 3 + 5 – 4 – 8 + 7 + 9.

Мы можем сначала сложить все положительные числа + 6 + 5 + 7 + 9 = + 27, потом все отрицат. – 7 – 3 – 4 – 8 = – 22 и затем полученные результаты между собою + 27 – 22 = + 5.

Можем также воспользоваться здесь тем, что числа + 5 – 4 – 8 + 7 взаимно уничтожаются и тогда остается сложить лишь числа + 6 – 7 – 3 + 9 = + 5.

Другой способ обозначения сложения

Можно каждое слагаемое заключать в скобки и между скобками написать знак сложения. Напр.:

(+7) + (+9); (–3) + (–8); (+7) + (–11); (–4) + (+5);
(–3) + (+5) + (–7) + (+9) + (–11) и т. п.

Мы можем, согласно предыдущему, сразу написать сумму, напр. (–4) + (+5) = +1 (случай сложения чисел с разными знаками: надо из большей абсолютной величины вычесть меньшую и написать знак того числа, у которого абсолютная величина больше), но можем также переписать сначала то же самое без скобок, пользуясь нашим условием, что если числа написаны рядом с их знаками, то эти числа надо сложить; след.,

чтобы раскрыть скобки при сложении положительных и отрицательных чисел, надо слагаемые написать рядом с их знаками (знак сложения и скобки опустить).

Напр.: (+ 7) + (+ 9) = + 7 + 9; (– 3) + (– 8) = – 3 – 8; (+ 7) + (– 11) = + 7 – 11; (– 4) + (+ 5) = – 4 + 5; (– 3) + (+ 5) + (– 7) + (+ 9) + (– 11) = – 3 + 5 – 7 + 9 – 11.

После этого можно полученные числа сложить.

В курсе алгебры следует обратить особенное внимание на уменье раскрывать скобки.

Упражнения.

1) (– 7) + (+ 11) + (– 15) + (+ 8) + (– 1);

План урока:

I. Организационный момент

Проверка индивидуального домашнего задания.

II. Актуализация опорных знаний учащихся

1. Взаимотренаж. Контрольные вопросы (парная организационная форма работы – взаимопроверка).
2. Устная работа с комментированием (групповая организационная форма работы).
3. Самостоятельная работа (индивидуальная организационная форма работы, самопроверка).

III. Сообщение темы урока

Групповая организационная форма работы, выдвижение гипотезы, формулирование правила.

1. Выполнение тренировочных заданий по учебнику (групповая организационная форма работы).
2. Работа сильных обучающихся по карточкам (индивидуальная организационная форма работы).

VI. Физпауза

IX. Домашнее задание.

Цель: формирование навыка сложения чисел с разными знаками.

Задачи:

  • Сформулировать правило сложения чисел с разными знаками.
  • Отрабатывать умение складывать числа с разными знаками.
  • Развивать логическое мышление.
  • Воспитывать умение работать в паре, взаимоуважение.

Материал к уроку: карточки для взаимотренажа, таблицы результатов работы, индивидуальные карточки на повторение и закрепление материала, девиз для индивидуальной работы, карточки с правилом.

ХОД УРОКА

I. Организационный момент

– Начнём урок с проверки индивидуального домашнего задания. Девизом нашего урока будут слова Яна Амоса Каменского. Дома вам нужно было подумать над его словами. Как вы его понимаете? («Считай несчастным тот день или тот час, в который ты не усвоил ничего нового и ничего не прибавил к своему образованию»)
Как вы понимаете слова автора? (Если мы не узнаём ничего нового, не получаем новые знания, то этот день можно считать пропавшим или несчастным. Надо стремиться к получению новых знаний).
– И сегодняшний день не будет несчастным потому, что мы опять будем узнавать что-то новое.

II. Актуализация опорных знаний учащихся

– Для того чтобы изучать новый материал, надо повторить пройденный.
Дома было задание – повторить правила и сейчас вы покажете свои знания, поработав с контрольными вопросами.

(Контрольные вопросы по теме «Положительные и отрицательные числа»)

Работа в паре. Взаимопроверка. Результаты работы отмечают в таблице)

Как называются числа расположенные справа от начала координат? Положительные
Какие числа называют противоположными? Два числа, отличающиеся друг от друга только знаками, называют противоположными
Что называют модулем числа? Расстояние от точки А(а) до начала отсчёта, т. е. до точки О(0), называют модулем числа
Как обозначают модуль числа? Прямыми скобками
Сформулируй правило сложения отрицательных чисел? Чтобы сложить два отрицательных числа надо: сложить их модули и поставить знак минус
Как называются числа расположенные слева от начала координат? Отрицательные
Какое число противоположно нулю? 0
Может ли модуль какого-нибудь числа быть отрицательным числом? Нет. Расстояние не бывает отрицательным
Назови правило сравнения отрицательных чисел Из двух отрицательных чисел больше то, модуль которого меньше и меньше то, у которого модуль больше
Чему равна сумма противоположных чисел? 0

Ответы на вопросы «+» правильно, «–» неправильно Критерии оценки: 5 – «5»; 4 – «4»;3 – «3»

1 2 3 4 5 Оценка
К/вопросы
Сам/работа
Инд/ работа
Итог

– Какие вопросы были наиболее трудными?
– Что нужно для успешной сдачи контрольных вопросов? (Знать правила)

2. Устная работа с комментированием

– 45 + (– 45) = (– 90)
– 100 + (– 38) = (– 138)
– 3, 5 + (–2, 4) = (– 5,9)
– 17/70 + (– 26/70) = (– 43/70)
– 20 + (– 15) = (– 35)

– Какие знания вам были нужны для решения 1-5 примеров?

3. Самостоятельная работа

– 86, 52 + (– 6, 3) = – 92,82
– 49/91 + (– 27/91) = – 76/91
– 76 + (– 99) = – 175
– 14 + (– 47) = – 61
– 123,5 + (– 25, 18) = – 148,68
6 + (– 10) =

(Самопроверка. Открыть во время проверки ответы)

– Почему последний пример вызвал у вас затруднение?
– Сумму каких чисел нужно найти, а сумму каких чисел мы знаем, как находить?

III. Сообщение темы урока

– Сегодня на уроке мы узнаем правило сложения чисел с разными знаками. Будем учиться складывать числа с разными знаками. Самостоятельная работа в конце урока покажет ваши успехи.

IV. Изучение нового материала

– Откроем тетради, запишем дату, классная работа, тему урока «Сложение чисел с разными знаками».
– Что изображено на доске? (Координатная прямая)

– Докажите, что это координатная прямая? (Есть начало отсчёта, направление отсчёта, единичный отрезок)
– Сейчас мы с вами вместе будем учиться складывать числа с разными знаками с помощью координатной прямой.

(Объяснение обучающихся под руководством учителя.)

– Найдём на координатной прямой число 0. К 0 надо прибавить число 6. Делаем 6 шагов в правую сторону от начала координат, т.к. число 6 – положительное (ставим цветной магнитик на получившееся число 6). К 6 прибавим число (– 10), делаем 10 шагов в левую сторону от начала координат, т. к. (– 10) число отрицательное (ставим цветной магнитик на получившееся число (– 4).)
– Какой получили ответ? (– 4)
– Как получили число 4? (10 – 6)
Сделайте вывод: Из числа с большим модулем вычли число с меньшим модулем.
– Как в ответе получили знак минус?
Сделайте вывод: Взяли знак у числа с большим модулем.
– Запишем пример в тетрадь:

6 + (–10) = – (10 – 6) = – 4
10 + (–3) = + (10 – 3) = 7 (Аналогично решаем)

Принята запись:

6 + (– 10) = – (10 – 6) = – 4
10 + (– 3) = + (10 – 3) = 7

– Ребята, вы сейчас сами сформулировали правило сложения чисел с разными знаками. Ваши предположения мы назовём гипотезой . Вы выполнили очень важную интеллектуальную работу. Подобно учёным выдвинули гипотезу и открыли новое правило. Сверим вашу гипотезу с правилом (листок с отпечатанным правилом лежит на парте). Прочитаем хором правило сложения чисел с разными знаками

– Правило очень важное! Оно позволяет сложить числа разных знаков без помощи координатной прямой.
– Что не понятно?
– Где можно сделать ошибку?
– Для того чтобы правильно и без ошибок вычислять задания с положительными и отрицательными числами, надо знать правила.

V. Закрепление изученного материала

– Сможете ли вы найти сумму этих чисел на координатной прямой?
– С помощью координатной прямой такой пример решить трудно, поэтому будем использовать при решении открытое вами правило.
Задание написано на доске:
Учебник – с. 45; № 179 (в, г); № 180 (а, б); № 181 (б, в)
(Сильный ученик работает на закрепление данной темы с дополнительной карточкой.)

VI. Физпауза (Выполняют стоя)

– Человек обладает положительными и отрицательными качествами. Распределите эти качества на координатной прямой.
(Положительные качества – справа от начала отсчёта, отрицательные – слева от начала отсчёта.)
– Если качество отрицательное – хлопаем один раз, положительное – два раза. Будьте внимательны!
Доброта , злость, жадность, взаимовыручка , взаимопонимание , грубость, и, конечно же, сила воли и стремление к победе , которые вам сейчас потребуются, так как впереди у вас самостоятельная работа)
VII. Индивидуальная работа с последующей взаимопроверкой

Вариант 1 Вариант 2
– 100 + (20) = – 100 + (30) =
100 + (– 20) = 100 + (– 30) =
56 + (– 28) = 73 + (– 28) =
4,61 + (– 2,2) = 5, 74 + (– 3,15) =
– 43 + 65 = – 43 + 35 =

Индивидуальная работа (для сильных обучающихся) с последующей взаимопроверкой

Вариант 1 Вариант 2
– 100 + (20) = – 100 + (30) =
100 + (– 20) = 100 + (– 30) =
56 + (– 28) = 73 + (– 28) =
4,61 + (– 2,2) = 5, 74 + (– 3,15) =
– 43 + 65 = – 43 + 35 =
100 + (– 28) = 100 + (– 39) =
56 + (– 27) = 73 + (– 24) =
– 4,61 + (– 2,22) = – 5, 74 + (– 3,15) =
– 43 + 68 = – 43 + 39 =

VIII. Подведение итогов урока. Рефлексия

– Я считаю, что вы поработали активно, старательно, участвовали в открытии новых знаний, высказывали свое мнение, сейчас я могу оценить вашу работу.
– Скажите, ребята, что эффективнее: получать готовую информацию или размышлять самим?
– Что нового мы узнали на уроке? (Научились складывать числа с разными знаками.)
– Назовите правило сложения чисел с разными знаками.
– Скажите, наш урок сегодня не зря прошёл?
– Почему? (Получили новые знания.)
– Вернемся к девизу. Значит, Ян Амос Каменский был прав, когда сказал: «Считай несчастным тот день или тот час, в который ты не усвоил ничего нового и ничего не прибавил к своему образованию».

IX. Домашнее задание

Выучить правило (карточка), с.45, №184.
Индивидуальное задание – как вы понимаете слова Роджера Бэкона: «Человек, не знающий математику, не способен ни к каким другим наукам. Более того, он даже не способен оценить уровень своего невежества?

Дроби — это обычные числа, их тоже можно складывать и вычитать. Но из-за того, что в них присутствует знаменатель, здесь требуются более сложные правила, нежели для целых чисел.

Рассмотрим самый простой случай, когда есть две дроби с одинаковыми знаменателями. Тогда:

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить без изменений.

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель опять же оставить без изменений.

Внутри каждого выражения знаменатели дробей равны. По определению сложения и вычитания дробей получаем:

Как видите, ничего сложного: просто складываем или вычитаем числители — и все.

Но даже в таких простых действиях люди умудряются допускать ошибки. Чаще всего забывают, что знаменатель не меняется. Например, при сложении их тоже начинают складывать, а это в корне неправильно.

Избавиться от вредной привычки складывать знаменатели достаточно просто. Попробуйте сделать то же самое при вычитании. В результате в знаменателе получится ноль, и дробь (внезапно!) потеряет смысл.

Поэтому запомните раз и навсегда: при сложении и вычитании знаменатель не меняется!

Также многие допускают ошибки при сложении нескольких отрицательных дробей. Возникает путаница со знаками: где ставить минус, а где — плюс.

Эта проблема тоже решается очень просто. Достаточно вспомнить, что минус перед знаком дроби всегда можно перенести в числитель — и наоборот. Ну и конечно, не забывайте два простых правила:

  1. Плюс на минус дает минус;
  2. Минус на минус дает плюс.

Разберем все это на конкретных примерах:

Задача. Найдите значение выражения:

В первом случае все просто, а во втором внесем минусы в числители дробей:

Что делать, если знаменатели разные

Напрямую складывать дроби с разными знаменателями нельзя. По крайней мере, мне такой способ неизвестен. Однако исходные дроби всегда можно переписать так, чтобы знаменатели стали одинаковыми.

Существует много способов преобразования дробей. Три из них рассмотрены в уроке «Приведение дробей к общему знаменателю », поэтому здесь мы не будем на них останавливаться. Лучше посмотрим на примеры:

Задача. Найдите значение выражения:

В первом случае приведем дроби к общему знаменателю методом «крест-накрест». Во втором будем искать НОК. Заметим, что 6 = 2 · 3; 9 = 3 · 3. Последние множители в этих разложениях равны, а первые взаимно просты. Следовательно, НОК(6; 9) = 2 · 3 · 3 = 18.

Что делать, если у дроби есть целая часть

Могу вас обрадовать: разные знаменатели у дробей — это еще не самое большое зло. Гораздо больше ошибок возникает тогда, когда в дробях-слагаемых выделена целая часть.

Безусловно, для таких дробей существуют собственные алгоритмы сложения и вычитания, но они довольно сложны и требуют долгого изучения. Лучше используйте простую схему, приведенную ниже:

  1. Перевести все дроби, содержащие целую часть, в неправильные. Получим нормальные слагаемые (пусть даже с разными знаменателями), которые считаются по правилам, рассмотренным выше;
  2. Собственно, вычислить сумму или разность полученных дробей. В результате мы практически найдем ответ;
  3. Если это все, что требовалось в задаче, выполняем обратное преобразование, т.е. избавляемся от неправильной дроби, выделяя в ней целую часть.

Правила перехода к неправильным дробям и выделения целой части подробно описаны в уроке «Что такое числовая дробь ». Если не помните — обязательно повторите. Примеры:

Задача. Найдите значение выражения:

Здесь все просто. Знаменатели внутри каждого выражения равны, поэтому остается перевести все дроби в неправильные и сосчитать. Имеем:

Чтобы упростить выкладки, я пропустил некоторые очевидные шаги в последних примерах.

Небольшое замечание к двум последним примерам, где вычитаются дроби с выделенной целой частью. Минус перед второй дробью означает, что вычитается именно вся дробь, а не только ее целая часть.

Перечитайте это предложение еще раз, взгляните на примеры — и задумайтесь. Именно здесь начинающие допускают огромное количество ошибок. Такие задачи обожают давать на контрольных работах. Вы также неоднократно встретитесь с ними в тестах к этому уроку, которые будут опубликованы в ближайшее время.

Резюме: общая схема вычислений

В заключение приведу общий алгоритм, который поможет найти сумму или разность двух и более дробей:

  1. Если в одной или нескольких дробях выделена целая часть, переведите эти дроби в неправильные;
  2. Приведите все дроби к общему знаменателю любым удобным для вас способом (если, конечно, этого не сделали составители задач);
  3. Сложите или вычтите полученные числа по правилам сложения и вычитания дробей с одинаковыми знаменателями;
  4. Если возможно, сократите полученный результат. Если дробь оказалась неправильной, выделите целую часть.

Помните, что выделять целую часть лучше в самом конце задачи, непосредственно перед записью ответа.

В данном уроке рассматривается сложение и вычитание рациональных чисел. Тема относится к категории сложных. Здесь необходимо использовать весь арсенал полученных ранее знаний.

Правила сложения и вычитания целых чисел справедливы и для рациональных чисел. Напомним, что рациональными называют числа, которые могут быть представлены в виде дроби , где a – это числитель дроби, b – знаменатель дроби. При этом, b не должно быть нулём.

В данном уроке дроби и смешанные числа мы всё чаще будем называть одним общим словосочетанием — рациональные числа .

Навигация по уроку:

Пример 1. Найти значение выражения:

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении, является знаком операции и не относится к дроби . У этой дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы запишем его для наглядности:

Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того рационального числа, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих дробей до их вычисления:

Модуль рационального числа больше, чем модуль рационального числа . Поэтому мы из вычли . Получили ответ . Затем сократив эту дробь на 2, получили окончательный ответ .

Некоторые примитивные действия, такие как: заключение чисел в скобки и проставление модулей, можно пропустить. Данный пример вполне можно записать покороче:

Пример 2. Найти значение выражения:

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус, стоящий между рациональными числами и является знаком операции и не относится к дроби . У этой дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы запишем его для наглядности:

Заменим вычитание сложением. Напомним, что для этого нужно к уменьшаемому прибавить число, противоположное вычитаемому:

Получили сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус:

Примечание. Заключать в скобки каждое рациональное число вовсе необязательно. Делается это для удобства, чтобы хорошо видеть какие знаки имеют рациональные числа.

Пример 3. Найти значение выражения:

В этом выражении у дробей разные знаменатели. Чтобы облегчить себе задачу, приведём эти дроби к общему знаменателю. Не будем подробно останавливаться на том, как это сделать. Если испытываете трудности, обязательно повторите урок .

После приведения дробей к общему знаменателю выражение примет следующий вид:

Это сложение рациональных чисел с разными знаками. Вычитаем из большего модуля меньший модуль, и перед полученным ответом ставим знак того рационального числа, модуль которого больше:

Запишем решение данного примера покороче:

Пример 4. Найти значение выражения

Вычислим данное выражение в следующем : слóжим рациональные числа и , затем из полученного результата вычтем рациональное число .

Первое действие:

Второе действие:

Пример 5 . Найти значение выражения:

Представим целое число −1 в виде дроби , а смешанное число переведём в неправильную дробь:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Получили сложение рациональных чисел с разными знаками. Вычитаем из большего модуля меньший модуль, и перед полученным ответом ставим знак того рационального числа, модуль которого больше:

Получили ответ .

Есть и второй способ решения. Он заключается в том, чтобы сложить отдельно целые части.

Итак, вернёмся к изначальному выражению:

Заключим каждое число в скобки. Для этого смешанное число временно :

Вычислим целые части:

(−1) + (+2) = 1

В главном выражении вместо (−1) + (+2) запишем полученную единицу:

Полученное выражение . Для этого запишем единицу и дробь вместе:

Запишем решение этим способом покороче:

Пример 6. Найти значение выражения

Переведём смешанное число в неправильную дробь. Остальную часть перепишем без изменения:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Запишем решение данного примера покороче:

Пример 7. Найти значение выражение

Представим целое число −5 в виде дроби , а смешанное число переведём в неправильную дробь:

Приведём данные дроби к общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно .

Решим данный пример вторым способом. Вернемся к изначальному выражению:

Запишем смешанное число в развёрнутом виде. Остальное перепишем без изменений:

Заключим каждое рациональное число в скобки вместе своими знаками:

Вычислим целые части:

В главном выражении вместо запишем полученное число −7

Выражение является развёрнутой формой записи смешанного числа . Запишем число −7 и дробь вместе, образуя окончательный ответ:

Запишем это решение покороче:

Пример 8. Найти значение выражения

Заключим каждое рациональное число в скобки вместе своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно

Данный пример можно решить и вторым способом. Он заключается в том, чтобы сложить целые и дробные части по отдельности. Вернёмся к изначальному выражению:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус. Но в этот раз слóжим по отдельности целые части (−1 и −2), и дробные и

Запишем это решение покороче:

Пример 9. Найти выражения выражения

Переведём смешанные числа в неправильные дроби:

Заключим рациональное число в скобки вместе своим знаком. Рациональное число в скобки заключать не нужно, поскольку оно уже в скобках:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно

Теперь попробуем решить этот же пример вторым способом, а именно сложением целых и дробных частей по отдельности.

В этот раз, в целях получения короткого решения, попробуем пропустить некоторые действия, такие как: запись смешанного числа в развёрнутом виде и замена вычитания сложением:

Обратите внимание, что дробные части были приведены к общему знаменателю.

Пример 10. Найти значение выражения

Заменим вычитание сложением:

В получившемся выражении нет отрицательных чисел, которые являются основной причиной допущения ошибок. А поскольку нет отрицательных чисел, мы можем убрать плюс перед вычитаемым, а также убрать скобки:

Получилось простейшее выражение, которое вычисляется легко. Вычислим его любым удобным для нас способом:

Пример 11. Найти значение выражения

Это сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед полученными ответом поставим знак того рационального числа, модуль которого больше:

Пример 12. Найти значение выражения

Выражение состоит из нескольких рациональных чисел. Согласно , в первую очередь необходимо выполнить действия в скобках.

Сначала вычислим выражение , затем выражение Полученные результаты слóжим.

Первое действие:

Второе действие:

Третье действие:

Ответ: значение выражения равно

Пример 13. Найти значение выражения

Переведём смешанные числа в неправильные дроби:

Заключим рациональное число в скобки вместе со своим знаком. Рациональное число заключать в скобки не нужно, поскольку оно уже в скобках:

Приведём данные дроби в общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:

Заменим вычитание сложением:

Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед полученными ответом поставим знак того рационального числа, модуль которого больше:

Таким образом, значение выражения равно

Рассмотрим сложение и вычитание десятичных дробей, которые тоже относятся к рациональным числам и которые могут быть как положительными, так и отрицательными.

Пример 14. Найти значение выражения −3,2 + 4,3

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении, является знаком операции и не относится к десятичной дроби 4,3. У этой десятичной дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы его запишем для наглядности:

(−3,2) + (+4,3)

Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить того рационального числа, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих десятичных дробей до их вычисления:

(−3,2) + (+4,3) = |+4,3| − |−3,2| = 1,1

Модуль числа 4,3 больше, чем модуль числа −3,2 поэтому мы из 4,3 вычли 3,2. Получили ответ 1,1. Ответ положителен, поскольку перед ответом должен стоять знак того рационального числа, модуль которого больше. А модуль числа 4,3 больше, чем модуль числа −3,2

Таким образом, значение выражения −3,2 + (+4,3) равно 1,1

−3,2 + (+4,3) = 1,1

Пример 15. Найти значение выражения 3,5 + (−8,3)

Это сложение рациональных чисел с разными знаками. Как и в прошлом примере из большего модуля вычитаем меньший и перед ответом ставим знак того рационального числа, модуль которого больше:

3,5 + (−8,3) = −(|−8,3| − |3,5|) = −(8,3 − 3,5) = −(4,8) = −4,8

Таким образом, значение выражения 3,5 + (−8,3) равно −4,8

Этот пример можно записать покороче:

3,5 + (−8,3) = −4,8

Пример 16. Найти значение выражения −7,2 + (−3,11)

Это сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус.

Запись с модулями можно пропустить, чтобы не загромождать выражение:

−7,2 + (−3,11) = −7,20 + (−3,11) = −(7,20 + 3,11) = −(10,31) = −10,31

Таким образом, значение выражения −7,2 + (−3,11) равно −10,31

Этот пример можно записать покороче:

−7,2 + (−3,11) = −10,31

Пример 17. Найти значение выражения −0,48 + (−2,7)

Это сложение отрицательных рациональных чисел. Слóжим их модули и перед полученным ответом поставим минус. Запись с модулями можно пропустить, чтобы не загромождать выражение:

−0,48 + (−2,7) = (−0,48) + (−2,70) = −(0,48 + 2,70) = −(3,18) = −3,18

Пример 18. Найти значение выражения −4,9 − 5,9

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус который располагается между рациональными числами −4,9 и 5,9 является знаком операции и не относится к числу 5,9. У этого рационального числа свой знак плюса, который невидим по причине того, что он не записывается. Но мы запишем его для наглядности:

(−4,9) − (+5,9)

Заменим вычитание сложением:

(−4,9) + (−5,9)

Получили сложение отрицательных рациональных чисел. Слóжим их модули и перед полученным ответом поставим минус:

(−4,9) + (−5,9) = −(4,9 + 5,9) = −(10,8) = −10,8

Таким образом, значение выражения −4,9 − 5,9 равно −10,8

−4,9 − 5,9 = −10,8

Пример 19. Найти значение выражения 7 − 9,3

Заключим в скобки каждое число вместе со своими знаками

(+7) − (+9,3)

Заменим вычитание сложением

(+7) + (−9,3)

(+7) + (−9,3) = −(9,3 − 7) = −(2,3) = −2,3

Таким образом, значение выражения 7 − 9,3 равно −2,3

Запишем решение этого примера покороче:

7 − 9,3 = −2,3

Пример 20. Найти значение выражения −0,25 − (−1,2)

Заменим вычитание сложением:

−0,25 + (+1,2)

Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед ответом поставим знак того числа, модуль которого больше:

−0,25 + (+1,2) = 1,2 − 0,25 = 0,95

Запишем решение этого примера покороче:

−0,25 − (−1,2) = 0,95

Пример 21. Найти значение выражения −3,5 + (4,1 − 7,1)

Выполним действия в скобках, затем слóжим полученный ответ с числом −3,5

Первое действие:

4,1 − 7,1 = (+4,1) − (+7,1) = (+4,1) + (−7,1) = −(7,1 − 4,1) = −(3,0) = −3,0

Второе действие:

−3,5 + (−3,0) = −(3,5 + 3,0) = −(6,5) = −6,5

Ответ: значение выражения −3,5 + (4,1 − 7,1) равно −6,5.

Пример 22. Найти значение выражения (3,5 − 2,9) − (3,7 − 9,1)

Выполним действия в скобках. Затем из числа, которое получилось в результате выполнения первых скобок, вычтем число, которое получилось в результате выполнения вторых скобок:

Первое действие:

3,5 − 2,9 = (+3,5) − (+2,9) = (+3,5) + (−2,9) = 3,5 − 2,9 = 0,6

Второе действие:

3,7 − 9,1 = (+3,7) − (+9,1) = (+3,7) + (−9,1) = −(9,1 − 3,7) = −(5,4) = −5,4

Третье действие

0,6 − (−5,4) = (+0,6) + (+5,4) = 0,6 + 5,4 = 6,0 = 6

Ответ: значение выражения (3,5 − 2,9) − (3,7 − 9,1) равно 6.

Пример 23. Найти значение выражения −3,8 + 17,15 − 6,2 − 6,15

Заключим в скобки каждое рациональное число вместе со своими знаками

(−3,8) + (+17,15) − (+6,2) − (+6,15)

Заменим вычитание сложением там, где это можно:

(−3,8) + (+17,15) + (−6,2) + (−6,15)

Выражение состоит из нескольких слагаемых. Согласно сочетательному закону сложения, если выражение состоит из нескольких слагаемых, то сумма не будет зависеть от порядка действий. Это значит, что слагаемые можно складывать в любом порядке.

Не будем изобретать велосипед, а слóжим все слагаемые слева направо в порядке их следования:

Первое действие:

(−3,8) + (+17,15) = 17,15 − 3,80 = 13,35

Второе действие:

13,35 + (−6,2) = 13,35 − −6,20 = 7,15

Третье действие:

7,15 + (−6,15) = 7,15 − 6,15 = 1,00 = 1

Ответ: значение выражения −3,8 + 17,15 − 6,2 − 6,15 равно 1.

Пример 24. Найти значение выражения

Переведём десятичную дробь −1,8 в смешанное число. Остальное перепишем без изменения:

Выбор редакции
12 января 2010 года в 16 часов 53 минуты крупнейшее за последние 200 лет землетрясение магнитудой 7 баллов в считанные минуты погубило,...

Незнакомец, советуем тебе читать сказку "Каша из топора" самому и своим деткам, это замечательное произведение созданное нашими предками....

У пословиц и поговорок может быть большое количество значений. А раз так, то они располагают к исследованиям большим и малым. Наше -...

© Зощенко М. М., наследники, 2009© Андреев А. С., иллюстрации, 2011© ООО «Издательство АСТ», 2014* * *Смешные рассказыПоказательный...
Флавий Феодосий II Младший (тж. Малый, Юнейший; 10 апр. 401 г. - † 28 июля 450 г.) - император Восточной Римской империи (Византии) в...
В тревожный и непростой XII век Грузией правила царица Тамара . Царицей эту великую женщину называем мы, русскоговорящие жители планеты....
Житие сщмч. Петра (Зверева), архиепископа ВоронежскогоСвященномученик Петр, архиепископ Воронежский родился 18 февраля 1878 года в Москве...
АПОСТОЛ ИУДА ИСКАРИОТ Апостол Иуда ИскариотСамая трагическая и незаслуженно оскорбленная фигура из окружения Иисуса. Иуда изображён в...
Когнитивная психотерапия в варианте Бека - это структурированное обучение, эксперимент, тренировки в ментальном и поведенческом планах,...