Какие есть теоремы пифагора. Прямоугольный треугольник


Геометрия – наука не простая. Она может пригодиться как для школьной программы, так и в реальной жизни. Знание многих формул и теорем упростит геометрические вычисления. Одна из наиболее простых фигур в геометрии – это треугольник. Один из разновидностей треугольников, равносторонний, имеет свои особенности.

Особенности равностороннего треугольника

Согласно определению, треугольник – это многогранник, который имеет три угла и три стороны. Это плоская двумерная фигура, ее свойства изучаются в средней школе. По типу угла различают остроугольные, тупоугольные и прямоугольные треугольники. Прямоугольный треугольник – такая геометрическая фигура, где один из углов равен 90º. Такой треугольник имеет два катета (они создают прямой угол), и одну гипотенузу (она находится напротив прямого угла). В зависимости от того, какие величины известны, существует три простых способа вычислить гипотенузу прямоугольного треугольника.

Первый способ найти гипотенузу прямоугольного треугольника. Теорема Пифагора

Теорема Пифагора – древнейший способ вычислить любую из сторон прямоугольного треугольника. Звучит она так: “В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов”. Таким образом, чтобы вычислить гипотенузу, следует вывести квадратный корень из сумы двух катетов в квадрате. Для наглядности приведены формулы и схема.

Второй способ. Вычисление гипотенузы с помощью 2-х известных величин: катета и прилегающего угла

Одно из свойств прямоугольного треугольника гласит, что отношение длины катета к длине гипотенузы, равносильно косинусу угла между этиv катетом и гипотенузой. Назовем известный нам угол α. Теперь, благодаря известному определению, можно легко сформулировать формулу для вычисления гипотенузы: Гипотенуза = катет/cos(α)


Третий способ. Вычисление гипотенузы с помощью 2х известных величин: катета и противолежащего угла

Если известен противолежащий угол, возможно снова воспользоваться свойствами прямоугольного треугольника. Отношение длины катета и гипотенузы равносильно синусу противолежащего угла. Снова назовем известный угол α. Теперь для вычислений применим немного другую формулу:
Гипотенуза = катет/sin (α)


Примеры, которые помогут разобраться с формулами

Для более глубокого понимания каждой из формул, следует рассмотреть наглядные примеры. Итак, предположим, дан прямоугольный треугольник, где есть такие данные:

  • Катет – 8 см.
  • Прилегающий угол cosα1 – 0.8.
  • Противолежащий угол sinα2 – 0.8.

По теореме Пифагора: Гипотенуза = корень квадратный из (36+64) = 10 см.
По величине катета и прилежащего угла: 8/0.8 = 10 см.
По величине катета и противолежащего угла: 8/0.8 = 10 см.

Разобравшись в формуле, можно с легкостью вычислить гипотенузу с любыми данными.

Видео: Теорема Пифагора

(согласно папирусу 6619 Берлинского музея). По мнению Кантора, гарпедонапты, или «натягиватели верёвок», строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

Очень легко можно воспроизвести их способ построения. Возьмём верёвку длиною в 12 м и привяжем к ней по цветной полоске на расстоянии 3 м от одного конца и 4 метра от другого. Прямой угол окажется заключённым между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становится излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, - например, рисунки, изображающие столярную мастерскую.

Несколько больше известно о теореме Пифагора у вавилонян . В одном тексте, относимом ко времени Хаммурапи , то есть к 2000 году до н. э. , приводится приближённое вычисление гипотенузы прямоугольного треугольника . Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой - на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал вывод о большой вероятности того, что теорема о квадрате гипотенузы была известна в Индии уже около XVIII века до н. э.

Приблизительно в 400 г. до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Приблизительно в 300 г. до н. э. в «Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора.

Формулировки

Геометрическая формулировка:

Изначально теорема была сформулирована следующим образом:

Алгебраическая формулировка:

То есть, обозначив длину гипотенузы треугольника через , а длины катетов через и :

Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади . То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.

Обратная теорема Пифагора:

Доказательства

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы . Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например, с помощью дифференциальных уравнений).

Через подобные треугольники

Следующее доказательство алгебраической формулировки - наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры .

Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим её основание через H . Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC . Введя обозначения

получаем

Что эквивалентно

Сложив, получаем

, что и требовалось доказать

Доказательства методом площадей

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

Доказательство через равнодополняемость

  1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке 1.
  2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол - 180°.
  3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и площади внутреннего квадрата.

Что и требовалось доказать.

Доказательство Евклида

Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны.

Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника - BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах.

Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK.

Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, - это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно: треугольники равны по двум сторонам и углу между ними. Именно - AB=AK, AD=AC - равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата - 90°).

Рассуждение о равенстве площадей квадрата BCFG и прямоугольника BHJI совершенно аналогично.

Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах. Идея данного доказательства дополнительно проиллюстрирована с помощью анимации, расположенной выше.

Доказательство Леонардо да Винчи

Главные элементы доказательства - симметрия и движение.

Рассмотрим чертёж, как видно из симметрии, отрезок рассекает квадрат на две одинаковые части (так как треугольники и равны по построению).

Пользуясь поворотом на 90 градусов против часовой стрелки вокруг точки , мы усматриваем равенство заштрихованных фигур и .

Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей маленьких квадратов (построенных на катетах) и площади исходного треугольника. С другой стороны, она равна половине площади большого квадрата (построенного на гипотенузе) плюс площадь исходного треугольника. Таким образом, половина суммы площадей маленьких квадратов равна половине площади большого квадрата, а следовательно сумма площадей квадратов, построенных на катетах равна площади квадрата, построенного на гипотенузе.

Доказательство методом бесконечно малых

Следующее доказательство при помощи дифференциальных уравнений часто приписывают известному английскому математику Харди , жившему в первой половине XX века.

Рассматривая чертёж, показанный на рисунке, и наблюдая изменение стороны a , мы можем записать следующее соотношение для бесконечно малых приращений сторон с и a (используя подобие треугольников):

Пользуясь методом разделения переменных, находим

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов

Интегрируя данное уравнение и используя начальные условия, получаем

Таким образом, мы приходим к желаемому ответу

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения (в данном случае катет ). Тогда для константы интегрирования получим

Вариации и обобщения

Подобные геометрические фигуры на трех сторонах

Обобщение для подобных треугольников, площадь зеленых фигур A + B = площади синей C

Теорема Пифагора с использованием подобных прямоугольных треугольников

Обобщение теоремы Пифагора сделал Евклид в своей работе Начала , расширив площади квадратов на сторонах до площадей подобных геометрических фигур :

Если построить подобные геометрические фигуры (см. Евклидова геометрия) на сторонах прямоугольного треугольника, тогда сумма двух меньших фигур будет равняться площади большей фигуры.

Главная идея этого обобщения заключается в том, что площадь подобной геометрической фигуры пропорциональна квадрату любого своего линейного размера и в частности квадрату длины любой стороны. Следовательно, для подобных фигур с площадями A , B и C построенных на сторонах с длиной a , b и c , имеем:

Но, по теореме Пифагора, a 2 + b 2 = c 2 , тогда A + B = C .

И наоборот, если мы сможем доказать, что A + B = C для трех подобных геометрических фигур без использования теоремы Пифагора, тогда мы сможем доказать саму теорему, двигаясь в обратном направлении. Например, стартовый центральный треугольник может быть повторно использован как треугольник C на гипотенузе, и два подобных прямоугольных треугольника (A и B ), построенные на двух других сторонах, которые образуются в результате деления центрального треугольника его высотой. Сумма двух меньших площадей треугольников тогда, очевидно, равна площади третьего, таким образом A + B = C и, выполняя предыдущее доказывания в обратном порядке, получим теорему Пифагора a 2 + b 2 = c 2 .

Теорема косинусов

Теорема Пифагора - это частный случай более общей теоремы косинусов, которая связывает длины сторон в произвольном треугольнике:

где θ - угол между сторонами a и b .

Если θ равен 90 градусов, тогда cosθ = 0 и формула упрощается до обычной теоремы Пифагора.

Произвольный треугольник

В любой выбранный угол произвольного треугольника со сторонами a, b, c впишем равнобедренный треугольник таким образом, чтобы равные углы при его основании θ равнялись выбранному углу. Предположим, что выбранный угол θ расположен напротив стороны, обозначенной c . В результате мы получили треугольник ABD с углом θ, что расположен напротив стороны a и стороны r . Второй треугольник образуется углом θ, что расположен напротив стороны b и стороны с длиной s , как показано на рисунке. Сабит Ибн Курра утверждал, что стороны в этих трех треугольниках связаны следующим образом:

Когда угол θ приближается к π/2, основание равнобедренного треугольника уменьшается, и две стороны r и s перекрывают друг друга все меньше и меньше. Когда θ = π/2, ADB превращается в прямоугольный треугольник, r + s = c и получаем начальную теорему Пифагора.

Рассмотрим один из доводов. Треугольник ABC имеет такие же углы, как и треугольник ABD, но в обратном порядке. (Два треугольника имеют общий угол при вершине B, оба имеют угол θ и также имеют одинаковый третий угол, по сумме углов треугольника) Соответственно, ABC - подобен отражению ABD треугольника DBA, как показано на нижнем рисунке. Запишем соотношение между противоположными сторонами и прилегающими к углу θ,

Так же отражение другого треугольника,

Перемножим дроби и добавим эти два соотношения:

что и требовалось доказать.

Обобщение для произвольных треугольников через параллелограммы

Обобщение для произвольных треугольников,
площадь зеленого участка = площади синего

Доказательство тезиса, что на рисунке выше

Сделаем дальнейшее обобщение для непрямоугольных треугольников, используя параллелограммы на трех сторонах вместо квадратов. (квадраты - частный случай.) Верхний рисунок демонстрирует, что для остроугольного треугольника площадь параллелограмма на длинной стороне равна сумме параллелограммов на двух других сторонах, при условии что параллелограмм на длинной стороне построен, как изображено на рисунке (размеры, отмеченные стрелками, одинаковые и определяют стороны нижнего параллелограмма). Эта замена квадратов параллелограммами имеет четкое сходство с начальной теоремой Пифагора, считается, что её сформулировал Папп Александрийский в 4 г. н. э.

Нижний рисунок показывает ход доказательства. Посмотрим на левую сторону треугольника. Левый зеленый параллелограмм имеет такую же площадь, как левая часть синего параллелограмма, потому что они имеют такое же основание b и высоту h . Кроме того, левый зеленый параллелограмм имеет такую же площадь, как левый зеленый параллелограмм на верхнем рисунке, потому что они имеют общее основание (верхняя левая сторона треугольника) и общую высоту, перпендикулярную к этой стороне треугольника. Аналогично рассуждая для правой стороны треугольника докажем, что нижний параллелограмм имеет такую же площадь, как у двух зеленых параллелограммов.

Комплексные числа

Теорему Пифагора используют, чтобы найти расстояние между двумя точками в декартовой координатной системе , и эта теорема справедлива для всех истинных координат: расстояние s между двумя точками (a, b ) и (c, d ) равно

Не возникает проблем с формулой, если к комплексным числам относиться как к векторам с действительными компонентами x + i y = (x , y ). . Например, расстояние s между 0 + 1i и 1 + 0i рассчитываем как модуль вектора (0, 1) − (1, 0) = (−1, 1), или

Тем не менее, для операций с векторами с комплексными координатами необходимо провести определенное усовершенствование формулы Пифагора. Расстояние между точками с комплексными числами (a , b ) и (c , d ); a , b , c , и d все комплексные, сформулируем используя абсолютные величины. Расстояние s основано на векторной разнице (a c , b d ) в следующем виде: пусть разница a c = p + i q , где p - действительная часть разницы, q - мнимая часть, и i = √(−1). Аналогично, пусть b d = r + is . Тогда:

где - это комплексное сопряженное число для . Например, расстояние между точками (a , b ) = (0, 1) и (c , d ) = (i , 0) , рассчитаем разницей (a c , b d ) = (−i , 1) и в результате мы бы получили 0, если бы не были использованы комплексные сопряженные. Следовательно, используя усовершенствованную формулу, получим

Модуль определен следующим образом:

Стереометрия

Значительным обобщением теоремы Пифагора для трехмерного пространства является теорема де Гуа , названная в честь Ж.-П. де Гуа: если тетраэдр имеет прямой угол (как в кубе), тогда квадрат площади грани, лежащей напротив прямого угла, равен сумме квадратов площадей других трех граней. Этот вывод может быть обобщен как «n -мерная теорема Пифагора»:

Теорема Пифагора в трехмерном пространстве связывает диагональ AD с тремя сторонами.

Другое обобщение: Теорема Пифагора может быть применена для стереометрии в следующем виде. Рассмотрим прямоугольный параллелепипед, как показано на рисунке. Найдем длину диагонали BD по теореме Пифагора:

где три стороны образуют прямоугольный треугольник. Используем горизонтальную диагональ BD и вертикальное ребро AB, чтобы найти длину диагонали AD, для этого снова используем теорему Пифагора:

или, если все записать одним уравнением:

Этот результат - это трехмерное выражение для определения величины вектора v (диагональ AD), выраженного через его перпендикулярные составляющие {v k } (три взаимно перпендикулярные стороны):

Это уравнение можно рассматривать как обобщение теоремы Пифагора для многомерного пространства. Однако, результат на самом деле есть не что иное, как неоднократное применение теоремы Пифагора к последовательности прямоугольных треугольников в последовательно перпендикулярных плоскостях.

Векторное пространство

В случае ортогональной системы векторов имеет место равенство, которое тоже называют теоремой Пифагора:

Если - это проекции вектора на координатные оси, то эта формула совпадает с расстоянием Евклида - и означает, что длина вектора равна корню квадратному суммы квадратов его компонентов.

Аналог этого равенства в случае бесконечной системы векторов имеет название равенства Парсеваля .

Неевклидова геометрия

Теорема Пифагора выводится из аксиом евклидовой геометрии и, фактически, не действительна для неевклидовой геометрии, в том виде, в котором записана выше. (То есть теорема Пифагора оказывается своеобразным эквивалентом постулату Евклида о параллельности ) Другими словами, в неевклидовой геометрии соотношение между сторонами треугольника обязательно будет в форме, отличной от теоремы Пифагора. Например, в сферической геометрии все три стороны прямоугольного треугольника (скажем a , b и c ), которые ограничивают собой октант (восьмую часть) единичной сферы, имеют длину π/2, что противоречит теореме Пифагора, потому что a 2 + b 2 ≠ c 2 .

Рассмотрим здесь два случая неевклидовой геометрии - сферическая и гиперболическая геометрия; в обоих случаях, как и для евклидова пространства для прямоугольных треугольников, результат, который заменяет теорему Пифагора, следует из теоремы косинусов .

Однако, теорема Пифагора остается справедливой для гиперболической и эллиптической геометрии, если требование о прямоугольности треугольника заменить условием, что сумма двух углов треугольника должна равняться третьему, скажем A +B = C . Тогда соотношение между сторонами выглядит так: сумма площадей кругов с диаметрами a и b равна площади круга с диаметром c .

Сферическая геометрия

Для любого прямоугольного треугольника на сфере радиусом R (например, если угол γ в треугольнике прямой) со сторонами a , b , c соотношение между сторонами будет иметь такой вид:

Это равенство может быть выведено как особый случай сферической теоремы косинусов , которое справедливо для всех сферических треугольников:

где cosh - это гиперболический косинус. Эта формула является частным случаем гиперболической теоремы косинусов, которая справедлива для всех треугольников:

где γ - это угол, вершина которого противоположна стороне c .

где g ij называется метрическим тензором . Он может быть функцией позиции. Такие криволинейные пространства включают Риманову геометрию как общий пример. Это формулировка также подходит для Евклидова пространства при применении криволинейных координат. Например, для полярных координат:

Векторное произведение

Теорема Пифагора связывает два выражения величины векторного произведения. Один из подходов к определению векторного произведения требует, чтобы он удовлетворял уравнению:

в этой формуле используется скалярное произведение . Правая сторона уравнения называется детерминант Грамма для a и b , что равно площади параллелограмма, образованного этими двумя векторами. Исходя из этого требования, а также требования о перпендикулярности векторного произведения к его составляющим a и b следует, что, за исключением тривиальных случаев из 0- и 1-мерного пространства, векторное произведение определено только в трех и семи измерениях. Используем определение угла в n -мерном пространстве:

это свойство векторного произведения дает его величину в таком виде:

Через фундаментальное тригонометрическое тождество Пифагора получаем другую форму записи его величины:

Альтернативный подход к определению векторного произведения использует выражение для его величины. Тогда, рассуждая в обратном порядке, получаем связь со скалярным произведением:

См. также

Примечания

  1. History topic: Pythagoras’s theorem in Babylonian mathematics
  2. ( , С. 351) С. 351
  3. ( , Vol I, p. 144)
  4. Обсуждение исторических фактов приведено в ( , С. 351) С. 351
  5. Kurt Von Fritz (Apr., 1945). «The Discovery of Incommensurability by Hippasus of Metapontum». The Annals of Mathematics, Second Series (Annals of Mathematics) 46 (2): 242–264.
  6. Льюис Кэррол, «История с узелками», М., Мир, 1985, с. 7
  7. Asger Aaboe Episodes from the early history of mathematics . - Mathematical Association of America, 1997. - P. 51. - ISBN 0883856131
  8. Pythagorean Proposition , by Elisha Scott Loomis
  9. Euclid’s Elements : Book VI, Proposition VI 31: «In right-angled triangles the figure on the side subtending the right angle is equal to the similar and similarly described figures on the sides containing the right angle.»
  10. Lawrence S. Leff cited work . - Barron"s Educational Series. - P. 326. - ISBN 0764128922
  11. Howard Whitley Eves §4.8:...generalization of Pythagorean theorem // Great moments in mathematics (before 1650) . - Mathematical Association of America, 1983. - P. 41. - ISBN 0883853108
  12. Tâbit ibn Qorra (full name Thābit ibn Qurra ibn Marwan Al-Ṣābiʾ al-Ḥarrānī) (826-901 AD) was a physician living in Baghdad who wrote extensively on Euclid’s Elements and other mathematical subjects.
  13. Aydin Sayili (Mar. 1960). «Thâbit ibn Qurra"s Generalization of the Pythagorean Theorem». Isis 51 (1): 35–37. DOI :10.1086/348837 .
  14. Judith D. Sally, Paul Sally Exercise 2.10 (ii) // Cited work . - P. 62. - ISBN 0821844032
  15. For the details of such a construction, see George Jennings Figure 1.32: The generalized Pythagorean theorem // Modern geometry with applications: with 150 figures . - 3rd. - Springer, 1997. - P. 23. - ISBN 038794222X
  16. Arlen Brown, Carl M. Pearcy Item C : Norm for an arbitrary n -tuple ... // An introduction to analysis . - Springer, 1995. - P. 124. - ISBN 0387943692 See also pages 47-50.
  17. Alfred Gray, Elsa Abbena, Simon Salamon Modern differential geometry of curves and surfaces with Mathematica . - 3rd. - CRC Press, 2006. - P. 194. - ISBN 1584884487
  18. Rajendra Bhatia Matrix analysis . - Springer, 1997. - P. 21. - ISBN 0387948465
  19. Stephen W. Hawking cited work . - 2005. - P. 4. - ISBN 0762419229
  20. Eric W. Weisstein CRC concise encyclopedia of mathematics . - 2nd. - 2003. - P. 2147. - ISBN 1584883472
  21. Alexander R. Pruss

Теорема Пифагора : Сумма площадей квадратов, опирающихся на катеты (a и b ), равна площади квадрата, построенного на гипотенузе (c ).

Геометрическая формулировка:

Изначально теорема была сформулирована следующим образом:

Алгебраическая формулировка:

То есть, обозначив длину гипотенузы треугольника через c , а длины катетов через a и b :

a 2 + b 2 = c 2

Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади . То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.

Обратная теорема Пифагора:

Доказательства

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы . Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например с помощью дифференциальных уравнений).

Через подобные треугольники

Следующее доказательство алгебраической формулировки - наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры .

Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим её основание через H . Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC . Введя обозначения

получаем

Что эквивалентно

Сложив, получаем

Доказательства методом площадей

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

Доказательство через равнодополняемость

  1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке 1.
  2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол - 180°.
  3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и двух внутренних квадратов.

Что и требовалось доказать.

Доказательства через равносоставленность

Элегантное доказательство при помощи перестановки

Пример одного из таких доказательств указан на чертеже справа, где квадрат, построенный на гипотенузе, перестановкой преобразуется в два квадрата, построенных на катетах.

Доказательство Евклида

Чертеж к доказательству Евклида

Иллюстрация к доказательству Евклида

Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны.

Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника - BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах.

Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK.

Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, - это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно, треугольники равны по двум сторонам и углу между ними. Именно - AB=AK,AD=AC - равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата - 90°).

Рассуждение о равенстве площадей квадрата BCFG и прямоугольника BHJI совершенно аналогично.

Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах. Идея данного доказательства дополнительно проиллюстрирована с помощью анимации, расположенной выше.

Доказательство Леонардо да Винчи

Доказательство Леонардо да Винчи

Главные элементы доказательства - симметрия и движение.

Рассмотрим чертёж, как видно из симметрии, отрезок C I рассекает квадрат A B H J на две одинаковые части (так как треугольники A B C и J H I равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки, мы усматриваем равенство заштрихованных фигур C A J I и G D A B . Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей квадратов, построенных на катетах, и площади исходного треугольника. С другой стороны, она равна половине площади квадрата, построенного на гипотенузе, плюс площадь исходного треугольника. Последний шаг в доказательстве предоставляется читателю.

Доказательство методом бесконечно малых

Следующее доказательство при помощи дифференциальных уравнений часто приписывают известному английскому математику Харди , жившему в первой половине XX века.

Рассматривая чертёж, показанный на рисунке, и наблюдая изменение стороны a , мы можем записать следующее соотношение для бесконечно малых приращений сторон с и a (используя подобие треугольников):

Доказательство методом бесконечно малых

Пользуясь методом разделения переменных, находим

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов

Интегрируя данное уравнение и используя начальные условия, получаем

c 2 = a 2 + b 2 + constant.

Таким образом, мы приходим к желаемому ответу

c 2 = a 2 + b 2 .

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения (в данном случае катет b ). Тогда для константы интегрирования получим

Вариации и обобщения

  • Если вместо квадратов построить на катетах другие подобные фигуры, то верно следующее обобщение теоремы Пифагора: В прямоугольном треугольнике сумма площадей подобных фигур, построенных на катетах, равна площади фигуры, построенной на гипотенузе. В частности:
    • Сумма площадей правильных треугольников, построенных на катетах, равна площади правильного треугольника, построенного на гипотенузе.
    • Сумма площадей полукругов, построенных на катетах (как на диаметре), равна площади полукруга, построенного на гипотенузе. Этот пример используется при доказательстве свойств фигур, ограниченных дугами двух окружностей и носящих имя гиппократовых луночек .

История

Чу-пей 500–200 до нашей эры. Слева надпись: сумма квадратов длин высоты и основания есть квадрат длины гипотенузы.

В древнекитайской книге Чу-пей говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.

Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника . Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой-на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод:

Литература

На русском языке

  • Скопец З. А. Геометрические миниатюры. М., 1990
  • Еленьский Щ. По следам Пифагора. М., 1961
  • Ван-дер-Варден Б. Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 1959
  • Глейзер Г. И. История математики в школе. М., 1982
  • В.Литцман, «Теорема Пифагора» М., 1960.
    • Сайт о теореме Пифагора с большим числом доказательств материал взят из книги В.Литцмана, большое число чертежей представлено в виде отдельных графических файлов.
  • Теорема Пифагора и пифагоровы тройки глава из книги Д. В. Аносова «Взгляд на математику и нечто из нее»
  • О теореме Пифагора и способах ее доказательства Г. Глейзер, академик РАО, Москва

На английском

  • Теорема Пифагора на WolframMathWorld (англ.)
  • Cut-The-Knot, секция посвящённая теореме пифагора, около 70 доказательств и обширная дополнительная информация (англ.)

Wikimedia Foundation . 2010 .

Теорема Пифагора - важнейшее утверждение геометрии. Теорема формулируется так: площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.

Обычно открытие этого утверждения приписывают древнегреческому философу и математику Пифагору (VI в. до н.э.). Но изучение вавилонских клинописных таблиц и древних китайских рукописей (копий еще более древних манускриптов) показало, что это утверждение было известно задолго до Пифагора, возможно, за тысячелетие до него. Заслуга же Пифагора состояла в том, что он открыл доказательство этой теоремы.

Вероятно, факт, изложенный в теореме Пифагора, был сначала установлен для равнобедренных прямоугольных треугольников. Достаточно взглянуть на мозаику из черных и светлых треугольников, изображенную на рис. 1, чтобы убедиться в справедливости теоремы для треугольника : квадрат, построенный на гипотенузе, содержит 4 треугольника, а на каждом катете построен квадрат, содержащий 2 треугольника. Для доказательства общего случая в Древней Индии располагали двумя способами: в квадрате со стороной изображали четыре прямоугольных треугольника с катетами длин и (рис. 2,а и 2,б), после чего писали одно слово «Смотри!». И действительно, взглянув на эти рисунки, видим, что слева свободна от треугольников фигура, состоящая из двух квадратов со сторонами и , соответственно ее площадь равна , а справа - квадрат со стороной - его площадь равна . Значит, , что и составляет утверждение теоремы Пифагора.

Однако в течение двух тысячелетий применяли не это наглядное доказательство, а более сложное доказательство, придуманное Евклидом, которое помещено в его знаменитой книге «Начала» (см. Евклид и его «Начала»), Евклид опускал высоту из вершины прямого угла на гипотенузу и доказывал, что ее продолжение делит построенный на гипотенузе квадрат на два прямоугольника, площади которых равны площадям соответствующих квадратов, построенных на катетах (рис. 3). Чертеж, применяемый при доказательстве этой теоремы, в шутку называют «пифагоровы штаны». В течение долгого времени он считался одним из символов математической науки.

В наши дни известно несколько десятков различных доказательств теоремы Пифагора. Одни из них основаны на разбиении квадратов, при котором квадрат, построенный на гипотенузе, состоит из частей, входящих в разбиения квадратов, построенных на катетах; другие - на дополнении до равных фигур; третьи - на том, что высота, опущенная из вершины прямого угла на гипотенузу, делит прямоугольный треугольник на два подобных ему треугольника.

Теорема Пифагора лежит в основе большинства геометрических вычислений. Еще в Древнем Вавилоне с ее помощью вычисляли длину высоты равнобедренного треугольника по длинам основания и боковой стороны, стрелку сегмента по диаметру окружности и длине хорды, устанавливали соотношения между элементами некоторых правильных многоугольников. С помощью теоремы Пифагора доказывается ее обобщение, позволяющее вычислить длину стороны, лежащей против острого или тупого угла:

Из этого обобщения следует, что наличие прямого угла в является не только достаточным, но и необходимым условием для выполнения равенства . Из формулы (1) следует соотношение между длинами диагоналей и сторон параллелограмма, с помощью которого легко найти длину медианы треугольника по длинам его сторон.

На основании теоремы Пифагора выводится и формула, выражающая площадь любого треугольника через длины его сторон (см. Герона формула). Разумеется, теорему Пифагора применяли и для решения разнообразных практических задач.

Вместо квадратов на сторонах прямоугольного треугольника можно строить любые подобные между собой фигуры (равносторонние треугольники, полукруги и т.д.). При этом площадь фигуры, построенной на гипотенузе, равна сумме площадей фигур, построенных на катетах. Другое обобщение связано с переходом от плоскости к пространству. Оно формулируется так: квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений (длины, ширины и высоты). Аналогичная теорема верна и в многомерном и даже бесконечномерном случаях.

Теорема Пифагора существует только в евклидовой геометрии. Ни в геометрии Лобачевского, ни в других неевклидовых геометриях она не имеет места. Не имеет места аналог теоремы Пифагора и на сфере. Два меридиана, образующие угол 90°, и экватор ограничивают на сфере равносторонний сферический треугольник, все три угла которого прямые. Для него , а не , как на плоскости.

С помощью теоремы Пифагора вычисляют расстояние между точками и координатной плоскости по формуле

.

После того как была открыта теорема Пифагора, возник вопрос, как отыскать все тройки натуральных чисел, которые могут быть сторонами прямоугольных треугольников (см. Ферма великая теорема). Они были открыты еще пифагорейцами, но какие-то общие методы отыскания таких троек чисел были известны еще вавилонянам. Одна из клинописных табличек содержит 15 троек. Среди них есть тройки, состоящие из настолько больших чисел, что не может быть и речи о нахождении их путем подбора.

ГИППОКРАТОВЫ ЛУНОЧКИ

Гиппократовы луночки - фигуры, ограниченные дугами двух окружностей, и притом такие, что по радиусам и длине общей хорды этих окружностей с помощью циркуля и линейки можно построить равновеликие им квадраты.

Из обобщения теоремы Пифагора на полукруги следует, что сумма площадей розовых луночек, изображенных на рисунке слева, равна площади голубого треугольника. Поэтому, если взять равнобедренный прямоугольный треугольник, то получатся две луночки, площадь каждой из которых будет равна половине площади треугольника. Пытаясь рещить задачу о квадратуре круга (см. Классические задачи древности), древнегреческий математик Гиппократ (V в. до н.э.) нашел еще несколько луночек, площади которых выражены через площади прямолинейных фигур.

Полный перечень гиппокраювых луночек был получен лишь в XIX-XX вв. благодаря использованию методов теории Галуа.

Убедитесь, что данный вам треугольник является прямоугольным, так как теорема Пифагора применима только к прямоугольным треугольникам. В прямоугольных треугольниках один из трех углов всегда равен 90 градусам.

  • Прямой угол в прямоугольном треугольнике обозначается значком в виде квадрата, а не в виде кривой, которая обозначает непрямые углы.

Обозначьте стороны треугольника. Катеты обозначьте как «а» и «b» (катеты – стороны, пересекающиеся под прямым углом), а гипотенузу – как «с» (гипотенуза – самая большая сторона прямоугольного треугольника, лежащая напротив прямого угла).

  • Определите, какую сторону треугольника требуется найти. Теорема Пифагора позволяет найти любую сторону прямоугольного треугольника (если известны две другие стороны). Определите, какую сторону (a, b, c) необходимо найти.

    • Например, дана гипотенуза, равная 5, и дан катет, равный 3. В этом случае необходимо найти второй катет. Мы вернемся к этому примеру позднее.
    • Если две другие стороны неизвестны, необходимо найти длину одной из неизвестных сторон, чтобы иметь возможность применить теорему Пифагора. Для этого используйте основные тригонометрические функции (если вам дано значение одного из непрямых углов).
  • Подставьте в формулу a 2 + b 2 = c 2 данные вам значения (или найденные вами значения). Помните, что a и b – это катеты, а с – это гипотенуза.

    • В нашем примере напишите: 3² + b² = 5².
  • Возведите в квадрат каждую известную сторону. Или же оставьте степени – вы можете возвести числа в квадрат позже.

    • В нашем примере напишите: 9 + b² = 25.
  • Обособьте неизвестную сторону на одной стороне уравнения. Для этого перенесите известные значения на другую сторону уравнения. Если вы находите гипотенузу, то в теореме Пифагора она уже обособлена на одной стороне уравнения (поэтому делать ничего не нужно).

    • В нашем примере перенесите 9 на правую сторону уравнения, чтобы обособить неизвестное b². Вы получите b² = 16.
  • Извлеките квадратный корень из обеих частей уравнения после того, как на одной стороне уравнения присутствует неизвестное (в квадрате), а на другой стороне – свободный член (число).

    • В нашем примере b² = 16. Извлеките квадратный корень из обеих частей уравнения и получите b = 4. Таким образом, второй катет равен 4.
  • Используйте теорему Пифагора в повседневной жизни, так как ее можно применять в большом числе практических ситуаций. Для этого научитесь распознавать прямоугольные треугольники в повседневной жизни – в любой ситуации, в которой два предмета (или линии) пересекаются под прямым углом, а третий предмет (или линия) соединяет (по диагонали) верхушки двух первых предметов (или линий), вы можете использовать теорему Пифагора, чтобы найти неизвестную сторону (если две другие стороны известны).

    • Пример: дана лестница, прислоненная к зданию. Нижняя часть лестницы находится в 5 метрах от основания стены. Верхняя часть лестницы находится в 20 метрах от земли (вверх по стене). Какова длина лестницы?
      • «в 5 метрах от основания стены» означает, что а = 5; «находится в 20 метрах от земли» означает, что b = 20 (то есть вам даны два катета прямоугольного треугольника, так как стена здания и поверхность Земли пересекаются под прямым углом). Длина лестницы есть длина гипотенузы, которая неизвестна.
        • a² + b² = c²
        • (5)² + (20)² = c²
        • 25 + 400 = c²
        • 425 = c²
        • с = √425
        • с = 20,6. Таким образом, приблизительная длина лестницы равна 20,6 метров.
  • Выбор редакции
    Незнакомец, советуем тебе читать сказку "Каша из топора" самому и своим деткам, это замечательное произведение созданное нашими предками....

    У пословиц и поговорок может быть большое количество значений. А раз так, то они располагают к исследованиям большим и малым. Наше -...

    © Зощенко М. М., наследники, 2009© Андреев А. С., иллюстрации, 2011© ООО «Издательство АСТ», 2014* * *Смешные рассказыПоказательный...

    Флавий Феодосий II Младший (тж. Малый, Юнейший; 10 апр. 401 г. - † 28 июля 450 г.) - император Восточной Римской империи (Византии) в...
    В тревожный и непростой XII век Грузией правила царица Тамара . Царицей эту великую женщину называем мы, русскоговорящие жители планеты....
    Житие сщмч. Петра (Зверева), архиепископа ВоронежскогоСвященномученик Петр, архиепископ Воронежский родился 18 февраля 1878 года в Москве...
    АПОСТОЛ ИУДА ИСКАРИОТ Апостол Иуда ИскариотСамая трагическая и незаслуженно оскорбленная фигура из окружения Иисуса. Иуда изображён в...
    Когнитивная психотерапия в варианте Бека - это структурированное обучение, эксперимент, тренировки в ментальном и поведенческом планах,...
    Мир сновидений настолько многогранен, что никогда не знаешь, что же появится в следующем сне. Порой сны бывают устрашающие, приводящие к...