Критерии устойчивости Вальда, Гурвица, Сэвиджа. Минимаксное решение


Для принципа выбора Гурвица характерно использование взвешенных значений принципа гарантированного результата (пессимизма) и принципа оптимизма . Здесь каждая стратегия характеризуется своим коэффициентом важности стратегии α,β = . Функция выбора, описывающая принцип Гурвица, может быть записана в виде:

u (y*)= α·u 1 (y)+(1-α)·u 2 (y),

где u 1 (y) - стратегия выбора, характеризующая принцип гарантированного результата;

u 2 (y) - стратегия выбора, характеризующая принцип оптимизма.

Учитывая, что

u 1 (y) = max min U i j

u 2 (y) = max max U i j

можно представить общее выражение для принципа Гурвица в виде

u (y*)= α max min U i j + (1-α)· max max U i j (3)

u (y*)= max [α min U i j + (1-α)· max U i j ]. (4)

Следовательно, наиболее предпочтительна стратегия Y*, для которой выполняется условие (4). При этом в зависимости от значения весового коэффициента α можно получить различные стратегии выбора при изменении его в диапазоне 0≤ α ≤ 1:

если α = 1, то получим принцип гарантированного результата ;

если α = 0, получим принцип оптимизма .

Проведем решение исходной задачи (табл.9)с использованием данной методики.

Решение задачи по принципу Гурвица.

    Задаём коэффициент , который характеризует ориентацию на принцип максимина или принцип оптимизма и     . Пусть  = 0,6.

    Решаем задачу по формуле Y *  max i ( min U ij + (1 - ) max j U ij) в два этапа:

2.1. Для каждой альтернативы находим *min j U ij +(1-)* max j U ij , для чего используем уже вычисленные значения по предыдущим задачам (значения Min U ij , Max U ij в табл.10). Расчет этих значений формируется так.

Исходными данными для выбора по методу Гурвица будут данные, полученные по стратегиям:

Для стратегии гарантированного результата:

Для стратегии оптимизма:

Принцип Гурвица Таблица 10

Альтернати-

Критерии (цели)

Знач. предпочт. по Гурвицу

Пусть весовой коэффициент характеризует степень важности соответствующей первой стратегии и его значение примем  = 0,6. Тогда получим для первого этапа

Подставляя соответствующие значения в систему получим:

Подставим их в графу «Значение предпочтений по Гурвицу» табл.10.

2.2. На втором этапе производим выбор в соответствии с правилом:

Оптимальной (по комбинированному принципу Гурвица) будет альтернатива Y 3 , значение функции полезности которой равно 4,2.

Для оценки влияния коэффициента  на уровень предпочтений по Гурвицу, проведем анализ значений для различных коэффициентов (табл.11).

Таблица 11

возможные значения весового коэффициента а

На основании данных значений можно сказать, что общим правилом выбора по всем значениям  будет метрика с  = 0,1, при этом, эффективной альтернативой является вариант 1 (Y1) с функцией предпочтения = 7,3.

Решение данной задачи в интегрированной системе Excel предполагает процедуру расчета показателей приведенных в табл.10-11, по алгоритму и формулам, приведенным в табл.12 и табл.13. Экранная форма указанных таблиц приведена на рис.10, 11.

Алгоритм расчета показателей по принципу Гурвица, в виде экранной формы приведен на рис.12.

Рис.10. Решение задачи по принципу Гурвица

Рис.11. Анализ оптимального решения (по Гурвицу) при различных значениях коэффициента 

Таблица 12

Принцип Гурвица

Критерии (цели)

Знач. предпочт. по Гурвицу

МАКС(B5:D5)

H5*E5+(1-H5)*F5

МАКС(B6:D6)

H6*E6+(1-H6)*F6

МАКС(B7:D7)

H7*E7+(1-H7)*F7

МАКС(B5:B7)

МАКС(C5:C7)

МАКС(D5:D7)

МАКС(E5:E7)

МАКС(G5:G7)

Таблица 13

Значения предпочтений по Гурвицу для различных коэффициентов 

=$B$19*E5+(1-$B$19)*F5

=$C$19*E5+(1-$C$19)*F5

0,3*E5+(1-0,3)*F5

0,4*E5+(1-0,4)*F5

0,5*E5+(1-0,5)*F5

0,6*E5+(1-0,6)*F5

0,7*E5+(1-0,7)*F5

0,8*E5+(1-0,8)*F5

0,9*E5+(1-0,9)*F5

=$B$19*E6+(1-$B$19)*F6

=$C$19*E6+(1-$C$19)*F6

0,3*E6+(1-0,3)*F6

0,4*E6+(1-0,4)*F6

0,5*E6+(1-0,5)*F6

0,6*E6+(1-0,6)*F6

0,7*E6+(1-0,7)*F6

0,8*E6+(1-0,8)*F6

0,9*E6+(1-0,9)*F6

=$B$19*E7+(1-$B$19)*F7

=$C$19*E7+(1-$C$19)*F7

0,3*E7+(1-0,3)*F7

0,4*E7+(1-0,4)*F7

0,5*E7+(1-0,5)*F7

0,6*E7+(1-0,6)*F7

0,7*E7+(1-0,7)*F7

0,8*E7+(1-0,8)*F7

0,9*E7+(1-0,9)*F7

МАКС(B20:B22)

МАКС(C20:C22)

МАКС(D20:D22)

МАКС(E20:E22)

МАКС(F20:F22)

МАКС(G20:G22)

МАКС(H20:H22)

МАКС(I20:I22)

МАКС(J20:J22)

Рис. 12. Алгоритм расчета показателей по принципу Гурвица


к.э.н., директор по науке и развитию ЗАО "КИС"

Минимаксное решение. Критерий Гурвица

Решения, принимаемые в условиях неопределенности, занимают весомую часть всего множества решений, принимаемых менеджерами. Но, как правило, на практике решения, принимаемые в условиях полной неопределенности, не встречаются. Для принятия решений предприятие должно собрать необходимый дополнительный объем релевантной информации и проанализировать ситуацию, либо принять решение на основе суждений, интуиции, анализа накопленного опыта руководителя. Для принятия оптимальных решений необходимо использовать научный подход при использовании различных методов.

К правилам принятия решений, при которых не учитывается численное значение вероятных исходов, относятся рассмотренные ранее максимаксное и максиминное решение, а также минимаксное решение и критерий Гурвица.

Минимаксное решение - это решение, при котором минимизируются максимальные потери. Это наиболее осторожный подход к принятию решений и наиболее учитывающий все возможные риски.

Правило минимакса (минимаксное правило возможных потерь ) состоит в том, чтобы для каждого решения выбрать максимально возможные потери. Затем выбирается решение, которое ведет к минимальному значению максимальных потерь.

Под потерями учитываются не только реальные потери, но и упущенные возможности. При использовании данного правила внимание уделяется возможным потерям, чем доходам.

На основании данных предыдущего примера по реализации пирожных составим таблицу возможных потерь, которая дает представление о прибылях каждого исхода, потерянных в результате принятия неправильного решения (число закупленных единиц).

Таблица возможных потерь за день

Таблица заполняется следующим образом.

Если количество закупленных пирожных равняется спросу за день, то возможные потери равняются нулю.

Если было принято решение приобрести, например, 1 пирожное, а спрос в этот день составил 2 штуки, то упущенная выгода составит 1*(60-50)=10 руб. Это и есть возможные потери. Для 2 штук пирожных, которые могли бы продать, сумма возможных потерь составляет 20 руб., для 3-х пирожных - 30 руб.

В тех случаях, когда закупленная единица не была реализована, она приносит убыток 1* (50-30)=20, это тоже возможные потери.

Для каждого решения выбирается максимальное число возможных потерь. Это числа 30, 20, 40, 60 и определяем из них минимальное 20. Данное значение соответствует решению о закупке 2 штук. Следовательно, руководствуясь правилом минимакса, минимальная величина максимальных потерь возникает в результате закупки двух пирожных в день.

Критерий Гурвица (Hurwicz criterion)- это компромиссный способ принятия решений.

При выборе решения из двух крайностей: пессимистической оценкой по критерию максимина и оптимистической оценкой максимакса рационально придерживаться промежуточной позиции, граница которой регулируется показателем пессимизма-оптимизма µ, называемым степенью оптимизма в критерии Гурвица.

В соответствии с этим компромиссным решением будет линейная комбинация минимального и максимального выигрыша

где 0 < µ < 1,

gnm - размер возможного дохода, который соответствует решениям при данных исходах.

Причем величину µ определяет исследователь или лицо, принимающее решение, при этом значению µ=1 критерию Гурвица соответствует правилу максимина (критерий Вальда), а значению µ =0 - правило максимакса (критерий Сэвиджа).

Критерий Гурвица заключается в том, что минимальному и максимальному результатам каждого решения присваивается "вес". Умножив результаты на соответствующие веса и суммируя их, лицо, принимающее решение, получает общий результат. Далее выбирается решение с наибольшим результатом.

Вернемся к предыдущему примеру и заполним таблицу по методу Гурвица.

Для четырех возможных решение были ранее получены максимаксное и максминное решения. Пусть вес минимального результата равен 0,4, следовательно, вес максимального - 0,6.


Таблица возможных решений

В данном примере критерий Гурвица свидетельствует в пользу решения о закупке одного пирожного, максимальная сумма составила 10. Очевидно, что при выборе других весов результат получается иным.

Поэтому к достоинству и одновременно недостатку критерия Гурвица относится необходимость присваивания весов возможным исходам: это позволяет учесть специфику ситуации, однако при этом всегда присутствует субъективный человеческий фактор - предпочтения аналитика.

В 1895 г. швейцарским ученым А. Гурвицем был предложен критерий, определяющий условия, которым должны удовлетворять коэффициенты характеристического уравнения системы для обеспечения отрицательности вещественных частей корней ее характеристического уравнения.

Приведем формулировку критерия Гурвица без доказательства. Так как характеристическое уравнение всегда может быть приведено к виду, когда а п > 0, то можно дать следующую формулировку критерия Гурвица.

Для того, чтобы система управления была устойчива, необходимо и достаточно, чтобы определитель Гурвица и все его диагональные миноры были положительными.

Если характеристическое уравнение системы я-го порядка имеет вид:

а п Х п + а я _ х я " х + ... + а } Х + я 0 =0,

то определитель Гурвица, составленный из коэффициентов характеристического уравнения, будет иметь вид:

а его диагональные миноры, определяемые из определителя Гурвица так, как показано в (6.8), будут иметь вид:

Для составления определителя Гурвица из коэффициентов характеристического уравнения я-й степени целесообразно сначала выписать по главной диагонали определителя все коэффициента уравнения от я л _, до а 0 в порядке убывания индексов коэффициентов. Затем необходимо дополнить столбцы определителя вверх и вниз от элементов главной диагонали. При дополнении столбцов вверх следует вписать в столбец коэффициенты с последовательно убывающими индексами, а при дополнении вниз - коэф-

фициенты с последовательно возрастающими индексами. На место коэффициентов, индексы которых больше чем п и меньше чем нуль, необходимо поставить нули. Условия устойчивости системы порядка п по данному критерию запишутся в виде:

а п > 0; А, > 0; Д 2 > 0 ... Д > 0; Д„>0. (6.9)

Элементы последнего столбца определителя, за исключением нижнего, будут равны нулю. Поэтому он может быть представлен в следующем виде:

Так как для устойчивой системы Д„_, > 0, то условие Д„ > 0 сводится к условию а 0 > 0.

Для получения условий нахождения системы на границе устойчивости необходимо Д п приравнять нулю, т. е. Д„ =0, соблюдая при этом условие положительности всех остальных определителей (миноров). Но условие Д п =д 0 Д„_, =0 распадается на два условия:

а 0 = 0 (6.10)

А я _,=0. (6.11)

Условие (6.10) соответствует границе устойчивости, когда характеристическое уравнение имеет нулевой корень (апериодическая граница устойчивости). Условие (6.11) соответствует границе устойчивости, когда характеристическое уравнение имеет пару чисто мнимых корней (колебательная граница устойчивости).

Значения параметров систем управления, при которых система находится на границе устойчивости, будем называть критическими значениями параметров.

Рассмотрим определение условий устойчивости для систем 1-, 2- и 3-го порядков, используя критерий устойчивости Гурви-ца. При этом считаем, что характеристическое уравнение системы приведено к виду, когда а п > 0.

1. Система управления, движение которой описывается уравнением первого порядка. Ее характеристическое уравнение имеет вид:

я,Х. + а 0 = 0.

Условия устойчивости:

д, > 0; Д, = д 0 > 0.

2. Система управления, движение которой описывается уравнением второго порядка. Ее характеристическое уравнение имеет вид:

а 2 Х 2 + а{к + д 0 = 0; д 2 >0.

Условия устойчивости:

или д, д 0 > 0, но так как д, > 0, то для того чтобы Д2 = д, д 0 >0, необходимо, чтобы д 0 > 0.

Таким образом, необходимым и достаточным условием устойчивости систем 1-го и 2-го порядков является положительность коэффициентов их характеристических уравнений, что подтверждает выводы, сделанные в предыдущем параграфе.

3. Система управления, движение которой описывается уравнением 3-го порядка. Ее характеристическое уравнение имеет вид:

д 3 А 3 + а 2 Х 2 + д,^ + д 0 =0; д 3 > 0. Условия устойчивости по Гурвицу имеют вид:

Д2 = Д 2 Д| - а ц а г >0» Д = о 0 а 2 > 0.

Так как Д 2 >0, то для выполнения последнего неравенства необходимо, чтобы д 0 > 0.

Окончательно условия устойчивости по критерию Гурвица для данной системы выглядят следующим образом:

д 3 > 0; д 2 > 0; д, > 0; д 0 > 0; д 2 д, >д 0 д 3 .

Полученный результат подтверждает ранее сделанный вывод, что положительность коэффициентов является только необходимым, но недостаточным условием устойчивости для систем третьего и выше порядков.

Рассмотрим для примера исследование устойчивости системы управления, уравнение движения которой имеет вид:

0,001 + 0,18-Р + 0,97-^- + 1,8- + 50* =

0,0015^^ + 1,5- + 10#. сИ 1 сИ

Характеристическое уравнение исследуемой системы имеет вид:

0,001Х 4 + 0,18А 3 + 0,97А. 2 + 1,8А. + 50 = 0.

Все коэффициенты характеристического уравнения положительные, поэтому необходимое условие устойчивости выполняется.

Составляем определитель Гурвица по ранее изложенному правилу:

  • 0,18 1,8 0 0
  • 0,001 0,97 50 0
  • 0 0,18 1,8 0
  • 0 0,001 0,97 50

Условия устойчивости:

  • 1) Д = 0,18 > 0;
  • 0,18 1,8 0,001 0,97
  • 2) Д 2 =
  • 3) Д, =

0,18-0,97 - 1,8 -0,001 =0,1728 > 0;

0,18 1,8 0 0,001 0,97 50 0 0,18 1,8

1,8(0,18-0,97 - 0,001 - 1,8) -

0,18 2 50 = -1,31

Следовательно, исследуемая система неустойчивая.

Применение критерия устойчивости Гурвица ограничено рядом присущих ему недостатков. Во-первых, применение этого критерия требует знания всех коэффициентов характеристического уравнения системы, т. е. всех параметров системы, что крайне неудобно при экспериментальных исследованиях систем, так как обычно характеристики рассматриваемой системы определяются из испытаний разомкнутой системы. Во-вторых, критерий устойчивости Гурвица позволяет определить, устойчива система или нет, но не позволяет определить, как следует изменить параметры системы, чтобы сделать систему устойчивой, если она неустойчивая. И, наконец, применение критерия Гурвица для системы высокого порядка связано со значительными математическими трудностями, особенно, если необходимо получить буквенный результат. Значительными достоинствами по сравнению с этим критерием обладают частотные критерии устойчивости.

Контрольные вопросы

  • 1. Записать условия устойчивости по Гурвицу в общем виде для систем 5-го порядка.
  • 2. Определить критическое значение передаточного коэффициента системы, передаточная функция которой в разомкнутом состоянии имеет вид:
  • -. Ответ: 1с п = 122,21.
  • (0,5р + 1)(0,05р + 1)(0,005 + 1) р
  • 3. Исследовать устойчивость системы, характеристическое уравнение которой имеет вид: X 6 + 6А. 5 + 15Х 4 + 20А 3 + 5Х 2 + + 1 = 0. Ответ: система устойчивая.

Обычный (или простой) критерий Гурвица учитывает только крайние исходы x i max и x i min каждой альтернативы:

x i max = max (x ij ) , x i min = min (x ij ) , j = 1..M

Он позволяет учесть субъективное отношение применяющего данный критерий ЛПР за счет придания этим исходам разных "весов". Для этого в расчет критерия введен "коэффициент оптимизма" λ, 0 ≤ λ ≤ 1 . Формула для расчета критерия Гурвица для i -й альтернативы с коэффициентом оптимизма λ выглядит следующим образом:

H i (λ) = λ x i max + (1 - λ) x i min

Если исходы представляют возможные выигрыши, то оптимальной признается альтернатива с максимальным значением критерия Гурвица:

Х* = Х k , H k (λ) = max (H i (λ) ) , i = 1..N

Как видно из формулы, правильный выбор коэффициента оптимизма λ оказывает существенное влияние на результат применения критерия. Остановимся подробнее на логике подбора λ .

Если ЛПР настроен пессимистически, то для него важнее меньше потерять при плохом развитии событий, пусть даже это означает не такой большой выигрыш при удачном состоянии. Значит, удельный вес наихудшего исхода x i min в оценке альтернативы должен быть выше, чем для x i mах . Это обеспечивается, когда λ находится в пределах от 0 до 0.5 , исключая последнее значение.

При λ = 0 критерий Гурвица "вырождается" в критерий Вальда и подходит только для очень пессимистично настроенных ЛПР.

Оптимистичный ЛПР, напротив, ориентируется на лучшие исходы, так как для него важнее больше выиграть, а не меньше проиграть. Больший удельный вес в оценке наилучшего исхода достигается при λ больше 0.5 и до 1 включительно. При λ = 1 критерий Гурвица становится критерием "максимакса", который учитывает исключительно наибольший исход каждой альтернативы.

Если у ЛПР нет ярко выраженного уклона ни в сторону пессимизма, ни оптимизма, коэффициент λ принимается равным 0.5 .

Пример применения критерия Гурвица

В условиях задачи из п.2.7 (табл.2.2) рассмотрим принятие решения по критерию Гурвица для ЛПР, настроенного оптимистически (λ = 0.8 ), и ЛПР-пессимиста (λ = 0.3 ). Порядок действий таков:

1. Найдем максимальные x i max и минимальные x i min исходы для каждого проекта:

x 1 max = max (45, 25, 50) = 50 x 1 min = min (45, 25, 50) = 25

x 2 max = max (20, 60, 25) = 60 x 2 min = min (20, 60, 25) = 20

2. Рассчитаем величину критерия Гурвица при заданных значениях коэффициента оптимизма:

ЛПР-оптимист (λ=0.8 ):

H 1 (0.8) = λ x 1 max + (1 - λ) x 1 min = 0.8×50 + (1 - 0.8) ×25 = 45

H 2 (0.8) = λ x 2 max + (1 - λ) x 2 min = 0.8×60 + (1 - 0.8) ×20 = 52

ЛПР-пессимист (λ=0.3 ):

H 1 (0.3) = λ x 1 max + (1- λ) x 1 min = 0.3×50 + (1 - 0.3) ×25 = 32.5

H 2 (0.3) = λ x 2 max + (1- λ) x 2 min = 0.3×60 + (1 - 0.3) ×20 = 32

3. Сравним полученные величины. Оптимальными для каждого ЛПР будут альтернативы с максимальным значением критерия Гурвица:

ЛПР-оптимист (λ = 0.8 ):

45 < 52 => H 1 (0.8) < H 2 (0.8) => X* = X 2

ЛПР-пессимист (λ = 0.3 ):

32.5 < 32 => H 1 (0.3) > H 2 (0.3) => X* = X 1

Как мы видим, выбор оптимальной альтернативы в одних и тех же условиях существенным образом зависит от отношения ЛПР к риску. Если для пессимиста оба проекта примерно равноценны, то оптимист, который надеется на лучшее, выберет второй проект. Его высокая наилучшая прибыль (60 ) при больших значениях коэффициента λ значительно повышает ценность данного проекта по критерию Гурвица.

Критерии устойчивости

Определение устойчивости АСУ по корням характеристического уравнения сопряжено с большими трудностями, связанными с решением дифференциального уравнения и большим объемом вычислений. Поэтому в практике ТАУ для определения устойчивости чаще используют критерии устойчивости.

Критерием устойчивости называется совокупность правил, методов или алгоритмов, которые позволяют судить об устойчивости АСУ без решения характеристического уравнения, используя другие признаки. Все критерии можно разделить на две группы: алгебраические критерии устойчивости и частотные критерии устойчивости. К алгебраическим критериям устойчивости относятся:

1) критерий устойчивости Вишнеградского;

2) критерий устойчивости Гурвица;

3) критерий устойчивости Рауса.

К частотным критериям устойчивости относятся:

4) частотный критерий устойчивости Найквиста;

5) частотный критерий устойчивости Михайлова.

Критерий устойчивости Гурвица можно сформулировать в форме, предложенной автором:

Если система описывается линейным дифференциальным уравнением, характеристическое уравнение которого имеет вид:

то для того, чтобы она была устойчива, т.е. чтобы все действительные корни и действительные части комплексных корней характеристического уравнения были бы отрицательны, необходимо и достаточно, чтобы все коэффициенты уравнения имели бы один и тот же знак, а диагональный детерминант порядка п-1 , составленный из коэффициентов уравнения, и все его диагональные миноры были бы положительными.

Диагональный детерминант составляется следующим образом: по диагонали определителя выписывают коэффициенты характеристического уравнения, начиная с a n -1 по а 1 . Таким образом, получается матрица, содержащая n-1 строку и n-1 столбец. Столбцы заполняют следующим образом: вверх выписывают коэффициенты с убывающими индексами, а вниз – с возрастающими. При достижении нулевого или n -го индекса далее ставят нули.

(8.6)

Таким образом, получается квадратная матрица размером (n-1 )* (n-1 ), на главной диагонали которой расположены коэффициенты от a n -1 по a 1 .

Каждый диагональный минор получают из предыдущего минора путем вычеркивания последней строки и последнего столбца.

(8.7)

(8.8)

(8.9)

D 1 =a n -1 (8.10)

Для решения вопроса об устойчивости АСУ выполняется анализ матрицы по следующим правилам:

1) если определители матрицы и всех диагональных миноров положительны, то АСУ устойчива;

2) если определитель или хотя бы один минор равен нулю, то АСУ находится на границе устойчивости;

3) если определитель или хотя бы один минор отрицательны, то АСУ неустойчива.



Рассмотрим конкретные примеры исследования систем на устойчивость с помощью критерия Гурвица.

Пример №1. АСУ включает статический объект второго порядка с передаточной функцией и интегральный регулятор с передаточной функцией . Определить при каком значении коэффициента передачи регулятора система будет устойчивой.

Запишем передаточную функцию замкнутой системы, при этом неважно по какому каналу будет записана передаточная функция, так как нас будет интересовать только знаменатель передаточной функции.

(811)

Знаменатель передаточной функции, приравненный к нулю, является характеристическим уравнением, т.е.

(8.12)

Подставим в уравнение (8.12) значения передаточных функций:

(8.13)

Приводя уравнение (8.13) к общему знаменателю и приравнивая числитель к нулю, получим характеристическое уравнение для системы

Составим главный детерминант, который для данного случая имеет второй порядок:

(8,15)

Из последнего равенства получим

(8.16)

В уравнении (8.16) слева записан параметр настройки регулятора, а справа параметры объекта. Чтобы система была более устойчивой, необходимо иметь как можно меньшее значение коэффициента передачи регулятора. Но в этом случае регулятор будет медленно воздействовать на объект. Поэтому приходится принимать компромиссное решение: чтобы система была устойчивой и регулятор достаточно быстро воздействовал на объект.

Если в уравнении (8.16) поставить знак равенства, т.е. , то система окажется на границе устойчивости. Если , то система будет неустойчивой. Поскольку параметры объекта изменяются довольно медленно, то воздействовать на характер переходного процесса можно, изменяя параметры регулятора.

Коэффициент передачи регулятора, при котором система оказывается на границе устойчивости, называется критическим.

Условие (8.17) можно записать и так

(8.18)

Уравнение (8.18) перепишем в форме

Уравнение (8.19) является уравнением гиперболы Вышнеградского, который сформулировал критерий устойчивости для систем, описываемых уравнениями не выше третьего порядка.

При переходе от уравнения (8.18) к уравнению (8.19) необходимо соблюдать следующие правила:

1) параметры X и Y должны быть безразмерными;

2) параметр X должен быть пропорционален коэффициенту передачи регулятора.

(8.20)

Построим гиперболу Вышнеградского в полученных координатах (рис. 8.4).

Рисунок 8.4 – Гипербола Вышнеградского для систем третьего порядка

Пример №2. Рассмотрим задачу, сформулированную в примере №1, но для случая, когда объект имеет передаточную функцию вида

Приравняв в уравнении (8.14) Т 2 к нулю, получим характеристическое уравнение

(8.22)

Составим главный детерминант, который для данного случая имеет первый порядок:

Получено условие, которое выполняется при любых параметрах системы.

Системы, которые при определенных значениях своих параметров могут быть устойчивыми, называются структурно-устойчивыми.

Пример №3. АСУ включает астатический объект второго порядка с передаточной функцией и интегральный регулятор с передаточной функцией . Определить, при каком значении коэффициента передачи регулятора система будет устойчивой.

Используя уравнение (8.13) и подставляя в него значения передаточных функций, получим

(8.23)

(8.24)

Перепишем уравнение (8.24) следующим образом:

Тогда главный детерминант примет вид:

В данном случае главный детерминант отрицательный, т.е. система неустойчивая, при этом она неустойчивая при любых своих параметрах. О таких системах говорят, что она структурно-неустойчивая.

Из последнего примера можно сделать вывод: что интегральный регулятор нельзя устанавливать на астатическом объекте, так как в любом случае мы получим неустойчивую систему.

Несмотря на простоту применения критерия Гурвица, он обладает рядом недостатков:

1) необходимо рассматривать передаточную функцию замкнутой системы, которая получается достаточно сложной;

2) с помощью критерия можно анализировать системы, у которых в знаменателе передаточной функции стоит рациональный многочлен.

Действительно, если передаточная функция объекта , а регулятора , то характеристическое уравнение имеет вид:

С помощью критерия устойчивости Гурвица эту систему исследовать нельзя. В этом случае нужны другие критерии.

Выбор редакции
Если Вы внезапно захворали и не можете справиться с тяжелой болезнью, обязательно прочитайте молитву Святому Луке об исцелении и...

Самое подробное описание: молитва что бы от любимого отстала соперница - для наших читателей и подписчиков.Любовь - очень сильное...

Данная статья содержит: молитва к пресвятой богородице основная - информация взята со вcех уголков света, электронной сети и духовных...

Очистить карму можно при помощи молитвы «На очищение рода» . Она снимает «кармические» или родовые проблемы нескольких поколений, такие...
Н. С. Хрущёв со своей первой женой Е. И. Писаревой. В первый раз Никита Хрущёв женился ещё в 20-летнем возрасте на красавице Ефросинье...
Черехапа редко балует нас промокодами. В июле наконец-то вышел новый купон на 2019 год. Хотите немного сэкономить на страховке для...
Спор можно открыть не раньше чем через 10 дней, после того как продавец отправит товар и до того как Вы подтвердите получение товара, но...
Рано или поздно, каждый покупатель сайта Алиэкспресс сталкивается с ситуацией, когда заказанный товар не приходит. Это может случится из...
12 января 2010 года в 16 часов 53 минуты крупнейшее за последние 200 лет землетрясение магнитудой 7 баллов в считанные минуты погубило,...