Планеты и четвёртое измерение.


  • Перевод

Наверняка вам известно, что планеты движутся вокруг солнца по эллиптическим орбитам. Но почему? На самом деле, они двигаются по окружностям в четырёхмерном пространстве. А если спроецировать эти окружности на трёхмерное пространство, они превращаются в эллипсы.

На рисунке плоскость обозначает 2 из 3 измерений нашего пространства. Вертикальное направление – это четвёртое измерение. Планета движется по кругу в четырёхмерном пространстве, а её «тень» в трёхмерном движется по эллипсу.

Что же это за 4-е измерение? Оно похоже на время, но это не совсем время. Это такое особенное время, которое течёт со скоростью, обратно пропорциональной расстоянию между планетой и солнцем. И относительно этого времени планета двигается с постоянной скоростью по кругу в 4 измерениях. А в обычном времени его тень в трёх измерениях двигается быстрее, когда она находится ближе к солнцу.

Звучит странно – но это просто необычный способ представления обычной ньютоновской физики. Этот способ известен по крайней мере с 1980 года благодаря работе математического физика Юргена Мозера. А я узнал об этом, получив на email работу за авторством Джеспера Горансона под названием «Симметрии в задаче Кеплера» (8 марта 2015).

Самое интересное в этой работе – такой подход объясняет один интересный факт. Если взять любую эллиптическую орбиту, и повернуть её в 4-мерном пространстве, то мы получим другую допустимую орбиту.

Конечно, можно вращать эллиптическую орбиту вокруг солнца и в обычном пространстве, получая допустимую орбиту. Интересно то, что это можно делать в 4-мерном пространстве, например, заужая или расширяя эллипс.

В общем случае любую эллиптическую орбиту можно превратить в любую другую. Все орбиты с одинаковой энергией – это круговые орбиты на одной и той же сфере в 4-мерном пространстве.

Задача Кеплера

Допустим, у нас есть частица, которая двигается по закону обратных квадратов. Уравнением её движения будет

Где r - позиция как функция времени, r - расстояние от центра, m – масса, а k определяет силу. Отсюда можно вывести закон сохранения энергии

Для некоей константы E, зависящей от орбиты, но не меняющейся со временем. Если эта сила будет притяжением, то k > 0, а на эллиптической орбите E < 0. Будем звать частицу планетой. Планета двигается вокруг солнца, которое настолько тяжело, что его колебаниями можно пренебречь.

Будем исследовать орбиты с одной энергией E. Поэтому единицы массы, длины и времени можно принять любыми. Положим

M = 1, k = 1, E = -1/2

Это избавит нас от лишних букв. Теперь уравнение движения выглядит как

А закон сохранения говорит

Теперь, следуя идее Мозера, перейдём от обычного времени к новому. Назовём его s и потребуем, чтобы

Такое время идёт медленнее по мере удаления от солнца. Поэтому скорость планеты по удалению от солнца увеличивается. Это компенсирует тенденцию планет двигаться по мере удаления от солнца более медленно в обычном времени.

Теперь перепишем закон сохранения при помощи нового времени. Поскольку для производных по обычному времени я использовал точку, давайте будем использовать штрих для производных по времени s. Тогда к примеру:

Используя такую производную, Горансон показывает, что сохранение энергии можно записать в виде

А это ни что иное, как уравнение четырёхмерной сферы. Доказательство будет позже. Сейчас поговорим о том, что это для нас значит. Для этого нам надо совместить меж собой координату обычного времени t и пространственные координаты (x,y,z). Точка

Двигается в четырёхмерном пространстве по мере изменения параметра s. То есть, скорость этой точки, а именно

Двигается по четырёхмерной сфере. Это сфера радиуса 1 с центром в точке

Дополнительные расчёты показывают другие интересные факты:

T""" = -(t" - 1)

Это обычные уравнения гармонического осциллятора, но с дополнительной производной. Доказательство будет позже, а пока подумаем, что это значит. Словами это можно описать так: 4-мерная скорость v совершает простые гармонические колебания вокруг точки (1,0,0,0).

Но так как v в то же время остаётся на сфере с центром в этой точки, то можно заключить, что v двигается с постоянной скоростью по кругу на этой сфере. А это подразумевает, что среднее значение пространственных компонент 4-мерной скорости равно 0, а среднее t равно 1.

Первая часть понятна: наша планета в среднем не улетает от Солнца, поэтому её средняя скорость равна нулю. Вторая часть посложнее: обычное время t движется вперёд со средней скоростью 1 относительно нового времени s, но скорость его изменения колеблется синусоидально.

Проинтегрировав обе части

Мы получим

a . Уравнение говорит, что позиция r гармонически осциллирует вокруг точки a . Поскольку a не меняется со временем, это сохраняющаяся величина. Это называется вектором Лапласа-Рунге-Ленца.

Часто люди начинают с закона обратных квадратов, показывают, что угловой момент и вектор Лапласа-Рунге-Ленца сохраняются, и используют эти сохраняющиеся величины и теорему Нётер, чтобы показать наличие 6-мерной группы симметрий. Для решений с отрицательной энергией это превращается в группу поворотов в 4 измерениях, SO(4). Поработав ещё немного, можно увидеть, как задача Кеплера сопряжена с гармоническим осциллятором в 4 измерениях. Это делается через репараметризацию времени.

Мне больше понравился подход Гораснона, потому что он начинается с репараметризации времени. Это позволяет эффективно показать, что эллиптическая орбита планеты – это проекция круговой орбиты в четырёхмерном пространстве на трёхмерное. Таким образом становится очевидна 4-мерная вращательная симметрия.

Горансон переносит этот подход на закон обратных квадратов в n-мерном пространстве. Получается, что эллиптические орбиты в n измерениях – это проекции круговых орбит из n+1 измерений.

Он также применяет этот подход для орбит с положительной энергией, которые представляют собой гиперболы, и для орбит с нулевой энергией (параболы). У гипербол получается симметрия групп Лоренца, а у парабол – симметрия групп Евклида. Это известный факт, однако примечательно, как просто он выводится с помощью нового подхода.

Математические детали

Из-за обилия уравнений я поставлю вокруг важных уравнений рамки. Основные уравнения – сохранение энергии, сила и изменение переменных, которые дают:

Начинаем с сохранения энергии:

Затем используем

Чтобы получить

Немного алгебры – и получаем

Это показывает, что 4-мерная скорость

Остаётся на сфере единичного радиуса с центром в (1,0,0,0).

Следующий шаг – взять уравнение движения

И переписать его, используя штрихи (производные по s), а не точки (производные по t). Начинаем с

И дифференцируем, чтобы получить

Теперь используем другое уравнение для

И получаем

Теперь хорошо бы получить формулу и для r"". Сначала посчитаем

А затем продифференцируем

Подключим формулу для r", кое-что сократится, и мы получим

Вспомним, что закон сохранения говорит

А мы знаем, что t" = r. Поэтому,

Получаем

Поскольку t" = r, то получается

Как нам и нужно.

Теперь получим сходную формулу для r""" . Начнём с

И продиффиренцируем

Подключим формулы для r"" и r"" ". Кое-что сокращается, и остаётся

Проинтегрируем обе части и получаем

Для некоего постоянного вектора a . Это значит, что r гармонически осциллирует относительно a . Занятно, что и вектор r и его норма r осциллируют гармонически.

Квантовая версия планетарной орбиты – атом водорода. Всё, что мы посчитали, можно использовать и в квантовой версии. Подробности см. у Greg Egan,

Текущий этап эволюции человечества характеризуется отсутствием у подавляющего большинства людей способности к восприятию четырёхмерного мира – «второго зрения», – а также неразвитостью более совершенного, чем интеллект, аспекта сознания – интуиции.

Раскрытие и последующее развитие нового (шестого) органа чувств – будущее человека новой (шестой) расы. Пока же человечество проходит переходный период на пути к новым возможностям, что подтверждается появлением так называемых экстрасенсов.

В связи с этим, лишь незначительная часть населения планеты имеет опыт взаимодействия с миром высших измерений. Большинство же современных людей, живущих в реально многомерном мире, по-прежнему воспринимает и осознаёт лишь самую примитивную его часть – трёхмерный физический мир.

Данное обстоятельство благоприятствует измышлению различных фантастических образов, приписываемых мирам бóльшей размерности. Это, в свою очередь, находит отражение не только в произведениях фантастов, но и в науке.

Примерами таких научных фантазий могут служить 4D-континуум, тёмная материя, кротовые норы, тессеракты, симплексы, суперструны, браны... За этим безудержным вымыслом учёных стоит полная непригодность трёхмерного математического аппарата для понимания и описания многомерных пространств.

ЗАМЕЧАНИЕ. То, что в математике называется «многомерными» пространствами, не имеет никакого отношения к реальности, поскольку в них не учитываются такие свойства подлинно многомерных пространств, как материальность и проницаемость; пространство наделяется непространственными свойствами, а свойство протяжённости вопреки здравому смыслу распространяется за пределы трёх измерений.

3D-иллюзии о многомерности

Главной бедой математики является то, что она больше тяготеет к ортодоксальным верованиям, чем к науке, поскольку построена не на обновляемых знаниях о мире, а на Неприкосновенных Священных Догматах , поколебать которые не в состоянии ни абсурд, ни парадоксы, ни научные открытия, ни череда кризисов, ни тысячелетия борьбы с догматизмом.

Ниже перечислим лишь часть самых одиозных Догматов (и их следствия), что делают познание многомерной структуры окружающего нас мира с помощью ТАКОЙ математики принципиально невозможным .

  1. В математике якобы реально существуют пространства с размерностью меньше трёх; при этом 0D-«пространство» – это точка, 1D-«пространство» – линия, 2D-«пространство» – поверхность ;
  2. Размер математической точки равен нулю, но она якобы существует;
  3. Якобы реально существует пустое пространство – «пространство» безразмерной точки;
  4. Размеры тел необъяснимым образом определяются суммой размеров безразмерных точек;
  5. Из нулевого размера точки следует также её нематериальность;
  6. Из нематериальности точки (0D-«пространства») вытекает нематериальность любого пространства;
  7. Из нематериальности пространства следует непризнание пространства атрибутом (неотъемлемым свойством) материи;
  8. Из непонимания неразрывной связи между пространством и материей вытекает самое нелепое заблуждение, допускающее «перенос» 3D-сущностей в пространства высших измерений:
    во-первых, потому, что 3D-объекты уже содержат в себе материю всех высших измерений, то есть уже доступны всем высшим пространственным сущностям;
    во-вторых, полная принадлежность к пространству высшей размерности требует полной ликвидации низшей 3D-материальной оболочки, что равносильно смерти в 3D-мире.
  9. Следствием предыдущих заблуждений является отсутствие в математике понятия «пространственная среда»;
  10. Из непонимания несопоставимости свойств материи разных измерений следует абсурдность требования ортогональности пространственных «осей», операции сложения векторов и нахождения скалярных сумм для совокупности разноразмерных пространств.
  11. Последнее заблуждение проявляется, в частности, в попытке суммировать вектор скорости 4D-света с вектором скорости его 3D-источника, двигающегося в ином пространстве;
  12. Ярким свидетельством полного непонимания математиками сути многомерности является повсеместное отождествление многокомпонентных 3D-векторов (х 1 , х 2 , х 3 , ... х n) с якобы многомерными математическими конструкциями.

    Покажем это на примере вектора свойств 3D-куска сахара со следующими векторными компонентами: длина х 1 ; ширина х 2 ; высота х 3 ; вес х 4 ; цвет х 5 ; вкус х 6 ; срок изготовления х 7 . В терминах математики получим 7-ми «мерный» (!) вектор. Однако пространственных измерений в этой 7-ми компонентной конструкции будет только три.

    Данный пример позволяет также легко понять, что обычное трёхмерное пространство, выдаваемое в релятивизме за 4D-пространство-время Минковского не имеет к четвёртому пространственному измерению ни малейшего отношения.

По выше названным и другим причинам, практически, все известные на сегодняшний день попытки смоделировать 4D-пространство средствами трёхмерной математики являются ничем иным, как 3D-фантазиями на недоступную для догматического мышления тему многомерности.

Где искать четвёртое измерение

Итак, если все перечисленные выше попытки научного понимания многомерных пространств являются не более, чем science fiction, то возникает несколько резонных вопросов:

  • Где же в таком случае скрывается хотя бы самое близкое к нам настоящее 4D-пространство?
  • И существует ли оно вообще?
  • А если существует, то почему же мы его не видим?

Прежде всего, следует сказать, что четырёхмерное пространство – это такая же реальность, как и наблюдаемое нами трёхмерное пространство.

На вопрос «Тогда почему мы его не видим?» проще всего ответить другим вопросом: «А почему никого не смущает то, что мы не видим содержимое компьютерных дисков, электричество, радиоволны, радиацию, свою ауру, чужие мысли»? Даже привидения удаётся увидеть только на фотоснимках.

Сложнее будет понять ответ на вопрос: «Где находится четырёхмерное пространство»?

Тем не менее, правильный ответ таков: «Мы все находимся внутри 4D-пространства; оно не только окружает нас, оно окружает и наполняет нас и всю 3D-Вселенную, включая космическое пространство и пространство внутри атомов; при этом нуклоны образованы частицами 4D-материи».

Материя четырёхмерного пространства называется физическим эфиром , в современной физике, чаще всего, – физическим вакуумом.

Согласно одной из гипотез частица эфира (амер) представляет собой электронно-позитронную пару. Таким образом, в невозбуждённом состоянии амер, как и атом, электрически нейтрален, но в отличии от атома он не содержит ядра.

Безъядерная 4D-эфирная материя играет роль посредника (прослойки) между атомарными 3D-физическим и 5D-астральным мирами:

  • частица эфира приблизительно на 8 порядков тоньше физического атома;
  • астральный атом приблизительно на 8 порядков тоньше эфирной частицы;
  • относительно физического атома астральный атом тоньше на 16 порядков.

На атомарном уровне структурирования материи различие в 8 порядков означает переход к новому измерению:

  • 3D-физический атом ≈ 10 -8 см;
  • 4D-частица эфира ≈ 10 -16 см;
  • 5D-астральный атом ≈ 10 -24 см.

В реальном мире количественное изменение размеров материи в пределах одного измерения (для атомов одной размерности) периодически сопровождается диалектическими скачкообразными переходами к новым качественным уровням, например:

  • физический атом → физическое тело → физическое небесное тело...;
  • астральный атом → астральное тело → астральная планета и так далее.

Математика же, игнорируя закон перехода количественных изменений в качественные и другие фундаментальные законы Мироздания , плодит лишь иллюзорно-мистические домыслы о многомерности, основанные исключительно на количественном , непрерывном и линейном наращивании размеров материи от несуществующего нуля до воображаемой бесконечности.

В этом математическом беззаконии заключена ещё одна причина научных фантазий о многомерных мирах и пространствах.

Упомянутая выше гипотеза многомерной организации Вселенной хорошо согласуется с наблюдениями и повседневным опытом, данными экстрасенсов и результатами экспериментов, а также со сведениями из Восточных духовных практик, оккультных, теософских и эзотерических источников.

Свойства четвёртого измерения

Пытаясь представить свойства гипотетического 4D-пространства, нельзя подменять здравый смысл трёхмерными математическими догмами. В противном случае нас ждут неприятные сюрпризы.

Возможна ли 4-я ортогональная ось?

У большинства из нас трёхмерное пространство ассоциируется с тремя осями декартовой системы координат. Поэтому многие с готовностью (не утруждая себя сомнениями и размышлениями) соглашаются с ничем не обоснованным догматом ортогональности N координатных осей для пространства N измерений.

При этом почему-то совершенно забывается простейшая мысль: «Ведь если "что-то" мы не можем даже представить, то есть мысленно создать соответствующий образ, значит это "что-то" не существует в принципе»!

Математики объясняют факт не понимания нами полёта их многомерных фантазий ограниченностью наших мыслительных способностей, поскольку, мол, окружающий нас мир трёхмерен. Однако на самом деле все разговоры об ограниченности нашего воображения – заведомая ложь, так как из 7-ми мерной материи мысли человек может с лёгкостью конструировать, как минимум, 6-ти мерные образы.

Это означает только одно: математики вполне могли бы пояснить нам свои «многомерные видения», конечно, если бы в тех была хоть капля реальности. Пока же мы все обречены поклоняться догмату «четвёртой ортогональной оси», не имея даже малейших разъяснений по поводу её построения.

Таким образом, очередной ложный догмат «четырёх перпендикуляров» к одной точке оборачивается ещё одним камнем преткновения на пути к пониманию реального многомерного мира.

Что измеряют измерения?

Почему пространственных измерений именно три, не больше и не меньше? Очевидно, потому, что атом, а с ним и вся остальная материя имеет строго три пространственные характеристики: длину, ширину и высоту.

Что же характеризуют эти три характеристики пространства? Конечно же, протяжённость материальных объектов в трёх возможных направлениях: вперёд↔назад, влево↔вправо, вверх↔вниз.

Можно ли указать ещё какие-то дополнительные характеристики протяжённости? Нет! Здравый смысл категорически отказывается от таких фантазий. Характеристик протяжённости можно представить только три для материи любой размерности.

Есть ли у материи другие свойства, кроме протяжённости? Разумеется, есть: цвет, вязкость, температура... Но пространственное свойство у трёхмерной материи только одно – протяжённость.

Возможно, 4D-материя обладает дополнительным пространственным свойством? Именно так! 4D-амер в силу его «тонкости» имеет по отношению к 3D-атому дополнительное пространственное свойство – проницаемость . В работе четвёртое измерение пространства названо «глубиной ».

По мнению автора оба термина нельзя признать удачными. Термин «проницаемость» может быть ошибочно приписан 3D-материи, так как она проницаема для материи всех высших измерений. Термин «глубина» совпадает с терминологией Евклида для характеристики совсем иного свойства (протяжённости) тела.

В этой связи, более предпочтительным представляется термин «вложенность », точнее передающий суть погружения высших пространств реального мира в низшие. Продемонстрируем сочетание пространственных характеристик протяжённости и вложенности на примере 5D-пространства :

  • три характеристики протяжённости (вперёд↔назад, влево↔вправо, вверх↔вниз);
  • две характеристики вложенности (в↔из 3D-пространства, в↔из 4D-пространства).

Понятно, что 7D-пространство будет иметь всё те же три характеристики протяжённости, а характеристик вложенности будет уже на две больше, то есть четыре, а в целом – 3+4 – семь.

Нетрудно видеть, что приведенная трактовка многомерности реального мира исключает ортогональность направлений протяжённости с направлениями вложенности, а последних ещё и между собой. Это позволяет прекратить домыслы на тему множественной ортогональности для многомерных пространств.

Что во что вложено?

Огромное количество публикаций повествует нам о том, что умозрительное двухмерное «пространство» вложено в трёхмерное. Чаще всего в качестве примера 2D-«пространства» приводится лист книги. Ну, а затем делается «гениальное» заключение о вложенности уже реального 3D-пространства в пространство четырёх измерений и далее аналогичным образом. В результате, на свет появляются фантастические псевдо-многомерные конструкции в виде тессерактов, симплексов и прочих псевдо-гипер-многогранников.

Апеллировать здесь к здравому смыслу совершенно бесполезно, потому что вся царица наук построена на незыблемой вере в реальность «пространств» с размерностью меньше трёх. Поэтому для разоблачения подобных манипуляций с лже-пространствами, возьмём на заметку два имевших место принципиально важных момента :

  • Низшее пространство в примере с книгой мысленно «вкладывалось» в высшее, то есть в пространство с бóльшим числом измерений;
  • Все фигурирующие в примере пространства наполнены материей одного типа , то есть трёхмерным веществом бумаги.

Если теперь от религиозных догм математики перейти к примерам из реальной жизни, то мы увидим, что 4D-электрон вкладывается в 3D-атом, 4D-радиоволна вкладывается в 3D-радиоприёмник. При этом всё происходит строго наоборот, ранее взятым на заметку моментам:

  • В реальной жизни высшее пространство вкладывается в низшее;
  • Материя реальных пространств разной размерности различна.

Если бы мы действовали в соответствии с правилами математики из первого примера, то оказалось бы, что атом может быть вложен в электрон, а радиоприёмник – в радиоволну, что, безусловно, является абсурдом, как и математические «пространства» с размерностью меньше трёх.

Выводы

  1. Понимание многомерных пространств в рамках современной (трёхмерной) математики принципиально невозможно.
  2. Для исследования многомерных пространств необходима разработка нового раздела «Многомерной математики».
  3. Выход математики из кризиса невозможен без отказа от многотысячелетнего догматизма в пользу пересматриваемой научной парадигмы.

Литература

  1. Микиша А. М., Орлов В. Б. Толковый математический словарь: Основные термины. – М.: Рус. яз., 1989. – 244 с.
  2. Пространство Минковского: Материал из Википедии. – http://ru.wikipedia.org/wiki/Пространство_Минковского
  3. Александр Котлин. Как понять четырёхмерное пространство? –
  4. Александр Котлин. Космические октавы – ключ к новому пониманию Мира. –
  5. Александр Котлин. Основы математики – беззаконие в кубе. – 27.02.2014. –
  6. Блаватская Е. П. Тайная доктрина: Синтез науки, религии и философии. Том 1: Космогенезис. – Л.: Экополис и культура, 1991. – 361 с.
  7. Николай Уранов. Нести радость. Фрагменты писем. 1965-1981. – Рига: Мир Огненный, 1998. – 477 с.
  8. Начала Евклида. Книги XI-XV. Перевод с греческого и комментарии Д. Д. Мордухай-Болтовского при участии М. Я. Выгодского и И. Н. Веселовского. – Гос. изд-во технико-теоретич. лит-ры, М.-Л.: 1950. – 335 с.
  9. Александр Котлин. Как понять 10-ти мерное пространство? –

Запускает проект «Вопрос учёному», в рамках которого специалисты будут отвечать на интересные, наивные или практичные вопросы. В этом выпуске кандидат физико-математических наук Илья Щуров рассказывает о 4D и о том, можно ли выйти в четвёртое измерение.

Что такое четырёхмерное пространство («4D»)?

Илья Щуров

Кандидат физико-математических наук, доцент кафедры высшей математики НИУ ВШЭ

Начнём с самого простого геометрического объекта - точки. Точка - нульмерна. У неё нет ни длины, ни ширины, ни высоты.

Сдвинем теперь точку по прямой на некоторое расстояние. Допустим, что наша точка - остриё карандаша; когда мы её сдвинули, она прочертила отрезок. У отрезка есть длина, и больше никаких измерений - он одномерен. Отрезок «живёт» на прямой; прямая является одномерным пространством.

Возьмём теперь отрезок и попробуем его сдвинуть, как раньше точку. (Можно представить себе, что наш отрезок - это основание широкой и очень тонкой кисти.) Если мы выйдем за пределы прямой и будем двигаться в перпендикулярном направлении, получится прямоугольник. У прямоугольника есть два измерения - ширина и высота. Прямоугольник лежит в некоторой плоскости. Плоскость - это двумерное пространство (2D), на ней можно ввести двумерную систему координат - каждой точке будет соответствовать пара чисел. (Например, декартова система координат на школьной доске или широта и долгота на географической карте.)

Если сдвинуть прямоугольник в направлении, перпендикулярном плоскости, в которой он лежит, получится «кирпичик» (прямоугольный параллелепипед) - трёхмерный объект, у которого есть длина, ширина и высота; он расположен в трёхмерном пространстве - в таком, в каком живём мы с вами. Поэтому мы хорошо представляем себе, как выглядят трёхмерные объекты. Но если бы мы жили в двумерном пространстве - на плоскости - нам пришлось бы изрядно напрячь воображение, чтобы представить себе, как можно сдвинуть прямоугольник, чтобы он вышел из той плоскости, в которой мы живём.

Представить себе четырёхмерное пространство для нас также довольно непросто, хотя очень легко описать математически. Трёхмерное пространство - это пространство, в котором положение точки задаётся тремя числами (например, положение самолёта задаётся долготой, широтой и высотой над уровнем моря). В четырёхмерном же пространстве точке соответствует четвёрка чисел-координат. «Четырёхмерный кирпич» получается сдвигом обычного кирпичика вдоль какого-то направления, не лежащего в нашем трёхмерном пространстве; он имеет четыре измерения.

На самом деле мы сталкиваемся с четырёхмерным пространством ежедневно: например, назначая свидание, мы указываем не только место встречи (его можно задать тройкой чисел), но и время (его можно задавать одним числом - например, количеством секунд, прошедших с определённой даты). Если посмотреть на настоящий кирпич, у него есть не только длина, ширина и высота, но ещё и протяженность во времени - от момента создания до момента разрушения.

Физик скажет, что мы живём не просто в пространстве, а в пространстве-времени; математик добавит, что оно четырёхмерно. Так что четвёртое измерение ближе, чем кажется.

Задачи:

Привести какой-нибудь другой пример реализации четырёхмерного пространства в реальной жизни.

Определить, что такое пятимерное пространство (5D). Как должен выглядеть 5D-фильм?

Ответы просьба присылать на e-mail: [email protected]

» мы коснёмся широко известной проблемы числа измерений в целом и перехода в них в частности. Мы постараемся рассмотреть этот вопрос не с традиционно мистической точки зрения, а с точки зрения практической (с помощью практических упражнений и обучающих видео).

Переход в четвёртое измерение интересовал людей очень и очень давно. Однако до сих пор существует две группы взглядов, которые по-разному относятся к четвёртому измерению. Одна из групп — это пространственное четвёртое измерение, а вторая — это временно е четвёртое измерение.

Пространственное четвёртое измерение очень хорошо проиллюстрировано в одном из выпусков журнала Трамвай, где была опубликована статья про четырёхмерную мышь (если что — она называется «Мышь ЧЕ-ТЫ-РЁХ-МЕР-НАЯ» и прочесть её можно здесь http://tramwaj.narod.ru/Archive/LJ_archive_2.htm). Там проводилась такая аналогия: для жителей одного измерения (линия) любые двухмерные существа будут восприниматься лишь как компоненты одного измерения. Всё, что выходит за рамки этого измерения, не будет замечено (ибо нечем смотреть).

Точно так же, жители двухмерного пространства (плоскости) могут увидеть жителей трёхмерного пространства лишь в качестве их двухмерных отпечатков-проекций. Им попросту нечем увидеть третье измерение. То есть, если бы человек попал в это двухмерное пространство, то в лучшем случае местные обитатели плоскости знакомились с отпечатками его подошв. А в худшем — поперечным срезом 🙂

Аналогично жители третьего измерения (то есть, мы с вами) могут увидеть четырёхмерных существ лишь как их трёхмерные проекции. То есть, обычные тела, имеющие длину, ширину и высоту.

Более высокое измерение имеет по отношению к более низкому измерению одно важное преимущество: существа из более высоких измерений могут нарушать законы физики более низких измерений. Так, если в двухмерной вселенной, на плоскости, посадить жителя в тюрьму, то он не сможет выбраться из неё, окружённый со всех двух сторон (поскольку измерений только два) стенами. Но если посадить в такую тюрьму трёхмерное существо (вернее, лишь его проекцию), то оно с лёгкостью выходит из двух измерений, скажем, вверх — и оказывается вне двухмерной тюрьмы.

Точно такие же плюшки доступны четырёхмерным существам в нашей трёхмерной вселенной. Согласитесь, всё это звучит очень заманчиво, мистично, и при овладении четвёртым измерением обещает принести массу бонусов типа подглядывания в женских раздевалках 🙂 Возможно, именно поэтому среди требований к переходящим в это измерение есть высокая этичность.

Но не будем углубляться в мистичные дебри — ведь мы обещали практику, а не мистику. Для этого обобщим. Так, одно обычное измерение перпендикулярно другому и третьему, образуя всем знакомые оси координат:

Тогда как по этой логике четвёртое пространственное измерение должно быть перпендикулярно этим трём.

Переход в четвёртое пространственное измерение осуществляется с помощью развития особого органа восприятия этого измерения. Обычно этот орган называется «третий глаз». Поскольку под этим словосочетанием что только не понимается, его мы использовать не будем. Тем более что четвёртое пространственное измерение воспринимается отнюдь не глазами. В качестве совета по развитию органа восприятия четвёртого пространственного измерения мы приведём упражнение из книги П.Д. Успенского (ученик Гурджиева, если что) «TERTIUM ORGANUM» (третий орган, если перевести):

Тренируйтесь видеть (для начала — в воображении) объёмные фигуры (кубы, пирамиды, сферы и т.д.) сразу со всех сторон.

Вот такое вот простое описание к сложному упражнению. Надеемся, всё понятно: обычно мы можем видеть максимум 3 стороны куба. А надо представить себе куб так, как если бы мы его видели со всех шести сторон сразу. Головоломка, да? 🙂

Для того, чтобы получить больше массы о четвёртом пространственном измерении, вы можете воспользоваться этими видео:

Первая часть видео про четвёртое измерение:

Вторая часть видео про четвёртое измерение

Рассмотрев практическую тренировку для перехода в пространственное четвёртое измерение, рассмотрим ещё один момент. Как это ни странно, четвёртое (а также пятое, шестое … одиннадцатое) пространственные измерения — отнюдь не пустой звук. По крайней мере, в свете последних достижений теории суперструн.

Так, для того, чтобы законы физики одинаково работали и на микро-, и на макроуровнях (от уровня, в тысячи раз меньшего, чем размеры молекулы, до межгалактических расстояний), в формулах необходимо наличие одиннадцати пространственных измерений. Три из этих измерений развёрнуты, а остальные — свёрнутые, и именно поэтому мы их не воспринимаем. Хотя колебания составляющих субатомных частиц очень даже зависят от этих свёрнутых измерений.

К сожалению, древние маги про эти свёрнутые измерения даже не подозревали, поэтому переход в эти свёрнутые измерения остаётся пока что совершенно оккультным, то есть тайным. Ибо если кто и придумал, как это делать, то не сказал как.

Сейчас самое время перейти к четвёртому измерению с точки зрения времени. Этот подход широко разработан физиками, так что особо рассказывать здесь нечего. Единственное кажущееся отличие временно го измерения в том, что по нему нельзя двигаться назад, как по трём пространственным. Лишь вперёд. Однако, это не совсем так — и именно этот нюанс даёт ключ к переходу в четвёртое временно е измерение.

Мало того, если для того, чтобы воспринять четвёртое пространственное измерение, нужно тренировать особый орган, для работы с четвёртым временны м измерением орган уже есть. И мало того, с помощью этого органа люди могут двигаться по этому измерению как назад, в прошлое, так и вперёд, в будущее.

Вы уже догадались, что это за штука такая, позволяющая путешествовать во времени?

Совершенно верно, это человеческий ум.

Следовательно, переход в четвёртое временно е измерение — это лишь образное выражение. Мы все и так находимся в этом четвёртом временно м измерении. Однако не все одинаково. Есть люди, которые помнят лишь вчерашний день и не заглядывают дальше завтрашнего. Их четвёртое измерение мизерно, а жизнь тяжела (хотя со стороны может казаться весёлой и беззаботной).

И, наоборот, существуют люди, которые в состоянии заглянуть далеко-далеко в прошлое, сравнить полученные данные с наблюдениями из настоящего и сделать практические выводы как про ближайшее, так и про отдалённое будущее. Как видите, эти люди овладели четвёртым измерением в очень значительной мере. В результате жизнь таких людей намного более стабильна, спокойна и счастлива.

Поэтому стоит вопрос не в переходе во временно е четвёртое измерение, а в углублении этого измерения. Ну а для этого нужно тренировать свой ум. Как это делать? Да очень просто. Главное, чтобы отрабатывалась основная деятельность ума: сравнивать данные из прошлого с данными из настоящего и делать правильные выводы. Ну а методов существует просто громадное количество.

Ещё один нюанс — это данные, которые использует ум для работы. Ведь если данные поступают на обработку ошибочные (из прошлого или из настоящего), то и выводы будут ошибочными. И тогда получится не четвёртое измерение, а фигня какая-то.

Почему бывают ошибочными полученные данные из прошлого и настоящего? Всё очень просто: потому что это неверно оцененные данные вследствие болезненного опыта. Пример: человека покусала собака, и теперь всегда, когда он видит собак, то получает данные не о их реальных намерениях или виде, а глюк из прошлого, связанный с болью. Следовательно, выводы на будущее (например «все собаки опасны») будут ложными. А четвёртое измерение — с червоточинкой.

Как избежать таких ошибок? Естественно, правильно оценив данные, полученные при наличии боли, столкновении или потере. Как это сделать? Этих способов намного меньше, чем способов совершенствования мышления. Но они есть, и вы сможете при желании их найти 🙂

Таким образом, переход в четвёртое измерение зависит от того, куда вы хотите перейти.

Удачных переходов!

Если что — пишите в комментарии!

См. также: http://akotlin.com/index.php?sec=1&lnk=3_11

Предисловие
Введение
1. Принцип наращивания размерностей
2. Принцип аналогий
3. Принцип многомерных массивов
4. Принцип сущностей
5. Принцип композиции
6. Принцип схлопывания
7. Принцип бесконечной рекурсии
Заключение
Литература
^Примечания (в конце статьи)

Влекут с завидным постоянством
Нас многомерные пространства.
Их наделяем чудесами,
О них мечтаем мы часами.
Повсюду ищем день за днём...
При этом сами в них живём. ©

ПРЕДИСЛОВИЕ

Почему люди веками пытаются понять и объяснить четырёхмерное пространство? Зачем им это нужно? Что толкает их на поиски загадочного четырёхмерного мира? Представляется, что этому есть несколько причин.

Во-первых, людей подталкивает к поиску невидимого пространства неосознаваемое ими чувствознание, другими словами, вера в Высшие основы Мироздания, как память о пребывании в том мире ещё до момента своего рождения.

Во-вторых, на существование Высшего мира прямо указывают все мировые религии и эзотерические учения. Данный факт невозможно сбросить со счетов или объявить случайным совпадением случайностей. Тем более, что случайность является всего лишь математической абстракцией и потому принципиально нереализуема в реальном мире, в котором все события строго обусловлены причинно-следственными связями.

В-третьих, на это указывает опыт, накопленный огромным числом экстрасенсов и мистиков всех времён и народов, в большинстве случаев никак не связанных между собой и не знакомых с опытом своих «коллег», но свидетельствующих, фактически, об одном и том же. Более того, каждый человек проводит в том мире третью часть своей жизни; это происходит во время сна.

Так в чём же тогда состоит проблема понимания четырёхмерного пространства?

ВВЕДЕНИЕ

С одной стороны, никакой проблемы понимания четырёхмерного пространства, казалось бы, не должно быть вовсе, так как имеется современное Учение – Агни Йога , б`ольшая часть книг которого почти целиком посвящена мирам высшей размерности. Имеются также подробнейшие разъяснения базовых положений этого Учения и, в частности, всех основных особенностей многомерных миров .

С другой стороны, проблема налицо, поскольку в науке нет даже определений^1 таких важнейших компонентов пространства, как точка, прямая, плоскость, а понятие размерность неточно^2 отражает фундаментальное свойство размерности пространства. Всё это в совокупности с верой в нуль, непрерывность и бесконечность^3, способствует появлению различных заблуждений и противоречий, например, таких как:

Оперирование понятием пространства бесконечно большой размерности;
отрицание возможности существования даже четырёхмерного пространства только на том основании, что четвёртую перпендикулярную координатную ось провести невозможно;
непонимание сути многомерности пространства;
игнорирование реально существующих^4 пространств высшей размерности;
разработка «многомерных» моделей Вселенной^5, не имеющих ничего общего с реальностью .

Предпринималось много попыток обосновать существование высшего, четырехмерного пространства. Среди них известны математические, физические, геометрические, психологические и другие попытки . Однако все их можно признать неудачными, поскольку они так и не дали чёткого и верного ответа на главный вопрос: что собой представляет и куда направлена «ось» 4-го измерения.

Рассмотрим теперь основные подходы к конструированию 4-х мерного пространства подробнее.

1. ПРИНЦИП НАРАЩИВАНИЯ РАЗМЕРНОСТЕЙ

Данный подход, или принцип основан на следующих простых рассуждениях. Пусть, к примеру, имеется 3D-объект – школьная тетрадь в линейку. Здесь буква «D» означает «размерность» (от англ. слова Dimension). Будучи трёхмерным объектом, тетрадь обладает тремя измерениями: длиной, шириной и толщиной.

Открыв тетрадь, мы можем наглядно убедиться в том, что «пространство» нулевой размерности (точки линеек) вложено в одномерное «пространство» (горизонтальные линии), а оно, в свою очередь, вложено в двухмерное «пространство» (страницу). Двухмерное «пространство», или страницы вложено в трёхмерное (тетрадь).

Простая индукция позволяет предположить, что трёхмерное пространство должно быть вложено в четырёхмерное, и так далее .

Прежде всего, здесь следует отметить, что наращивание размерности пространства на этапах 0D ––> 1D, 1D ––> 2D, 2D ––> 3D всегда осуществлялось в направлении, ПЕРПЕНДИКУЛЯРНОМ предыдущим направлениям. При переходе же к 4D-пространству этот принцип был нарушен, что ставит под сомнение как допустимость такого приёма, так и справедливость полученных результатов.

Кроме того, поскольку математическая точка не обладает размерами, то «пространства» с размерностью 0, 1 и 2 являются (также как и сама точка) лишь математическими абстракциями, то есть реально существовать не могут. Таким образом, минимальная размерность реального пространства равна трём: Dmin = 3. Следовательно, принцип индукции, выведенный для АБСТРАКТНЫХ объектов, не может быть положен в основу конструирования РЕАЛЬНОГО 4-х мерного пространства, а само 4-х мерное пространство не может быть объяснено рассмотренным выше способом.

Выводы 1:

1.1. Четырёхмерное пространство, полученное путём наращивания размерностей, является не более чем математической абстракцией, то есть игрой воображения.
1.2. Применение принципа наращивания размерностей для обоснования 4D-пространства чревато формированием ложных представлений о многомерных пространствах (рис. 1.2).
1.3. Наш 3-х мерный мир, который мы видим, ощущаем и понимаем, принципиально не может оказаться вложенным в какой-либо другой мир с числом измерений, отличным от трёх.

Тем не менее, отметим в нашем примере с тетрадкой и запомним два очень важных момента:

1. НИЗШЕЕ пространство всегда мысленно «вкладывалось» В ВЫСШЕЕ, то есть в пространство с б`ольшим числом измерений.
2. ВСЕ рассмотренные пространства наполнены материей ОДНОГО типа, то есть трёхмерной атомарной материей. В примере это были атомы, входящие в состав тетрадной бумаги и краски.

2. ПРИНЦИП АНАЛОГИЙ

Этот способ создания «четырёхмерных» фигур близок к рассмотренному в предыдущем разделе. В отличии от своих предшественников сторонники данного способа честно признают тот факт, что четвёртую перпендикулярную ось провести невозможно, но уверяют, что для получения четвёртого измерения необходимо и достаточно простых аналогий (табл. 2.1). Однако доказательства четырёхмерности полученных фигур, к сожалению, не приводятся.

Рассматривая рисунок 2.1 слева направо и фиксируя свойства геометрических объектов, придём к таблице свойств.

Таблица 2.1

1D: Отрезок | 2D: Треугольник | 3D: Тетраэдр | 4D: Симплекс
=======================================================
2 вершины | 3 вершины | 4 вершины | 5 вершин
1 ребро | 3 ребра | 6 рёбер | 10 рёбер
--- | 1 грань | 3 грани | 10 граней
--- | --- | 1 тетрагрань | 5 тетраграней
--- | --- | --- | 1 симплекс-грань

Как видно из рисунка и таблицы, в основе «принципа аналогий» лежит идея достаточности для перехода в новое измерение простого увеличения числа вершин геометрической фигуры и попарного соединения всех вершин рёбрами.
Более наглядное представление о принципе аналогий можно получить, просмотрев фрагмент видеофильма .

Подводя итоги, сформулируем выводы.

Выводы 2:

2.1. Основанные на принципе аналогий «многомерные» построения являются математическими абстракциями и существуют исключительно в воображении.
2.2. Разработанные виртуальные (компьютерные) реализации «четырёхмерных» геометрических многогранников не могут служить обоснованием реальности таких объектов, поскольку само понятие «виртуальный» является синонимом понятия «не существующий в реальности».
2.3. Перенесение этих абстракций в реальный мир требует предварительного доказательства их многомерности.

3. ПРИНЦИП МНОГОМЕРНЫХ МАССИВОВ

В предыдущих разделах мы убедились, что понять и описать реальное (не абстрактное) 4-х мерное пространство оказалось совсем непросто. Однако математика, как известно, с лёгкостью оперирует так называемыми многомерными объектами, например, «многомерными» массивами и векторами.

В связи с данным обстоятельством возникает идея применить для описания многомерных пространств и объектов якобы многомерные математические конструкции, например, массивы. Задать многомерный массив можно, дав определение, но можно ввести его в рассмотрение и поэтапно, то есть путём последовательных рассуждений, аналогичных проделанным в примере со школьной тетрадкой. Пойдём вторым путём:

Положение точки x на отрезке прямой задаётся одной координатой, другими словами, однокомпонентным одномерным массивом: A1 = (x1);
Положение точки x на плоскости определяется двумя координатами, то есть двухкомпонентным одномерным массивом: A2 = (x1, x2);
Положение точки x в трёхмерном пространстве будет описано тремя координатами, или трёхкомпонентным одномерным массивом: A3 = (x1, x2, x3);
Продолжая индукцию, придём к четырёхкомпонентному одномерному массиву, описывающему положение точки x в четырёхмерном гиперпространстве: A4 = (x1, x2, x3, x4).

Применяя понятие массива рекурсивно, то есть вкладывая одни массивы в другие, можно ввести иерархическую систему массивов для описания более крупных пространственных объектов:

Точка – массив координат в текущем пространстве;
Линия – массив точек (матрица);
Страница – массив линий («куб»);
Книга – массив страниц («гиперкуб»);
Книжная полка – массив книг (массив 5-го порядка);
Книжный шкаф – массив полок (массив 6-го порядка);
Книгохранилище – массив шкафов (массив 7-го порядка).

Приведём ещё один пример применения моделей пространства на основе вложенных многомерных массивов:

Атом – (одномерный) массив координат;
Молекула – (двухмерный) массив атомов;
Тело – (трёхмерный) массив молекул;
Небесное тело – (четырёхмерный) массив тел;
Звёздная система – (пятимерный) массив небесных тел;
Галактика – (шестимерный) массив звёздных систем;
Вселенная – (семимерный) массив Галактик.

Выводы 3:

3.1. Все объекты в рассмотренной иерархической модели имеют ОДИНАКОВУЮ пространственную размерность, которая определяется числом компонентов исходного одномерного массива. Однако этим компонентам можно дать не только пространственную, но и произвольную интерпретацию.
3.2. Ни количество вложенных массивов, ни их размерность (правильнее говорить – порядок!) никак не связаны с мерностью моделируемого пространства.
3.3. Таким образом, применив «многомерные» (правильнее говорить – многокомпонентные!) массивы, мы опять ни на шаг не приблизились к нашей цели – пониманию смысла многомерного пространства.

4. ПРИНЦИП СУЩНОСТЕЙ

Попробуем теперь от идеи конструирования мифических якобы «четырёхмерных» объектов перейти к реальным сущностям, чтобы взглянуть на мир как бы изнутри, то есть их «глазами». Предположим также, что в пространстве любой размерности (например, в трёхмерном пространстве) могут одновременно пребывать существа разного уровня развития, с разными возможностями по перемещению в пространстве, то есть с разным числом измерений.

Начнём с камней. К этой же группе можно причислить также «тессеракты», «симплексы» и все прочие многогранники. Это всё пассивные объекты, не способные к движению ни в одном из направлений. Поэтому отнесём их к категории «существ» нулевой^6 размерности.

К одномерным^7 сущностям можно отнести растения, которые имеют возможность «двигаться» только в одном направлении (в «направлении» увеличения своих размеров) с жёсткой привязкой к одной конкретной точке пространства.

Двухмерными^8 существами назовём тех, кто будет способен перемещаться в двух направлениях, то есть в пределах поверхности. Даже если эта поверхность имеет сложные очертания и переходит, например, с поверхности почвы в поверхность ствола дерева.

Простая аналогия позволяет предположить, что трёхмерные существа должны иметь способность перемещаться в 3-х различных направлениях. Например, они должны уметь не только ползать, но и ходить, прыгать или летать.

Та же аналогия приводит нас к выводу об обязательном наличии у четырёхмерных сущностей четвёртой сверх способности к перемещению в 4-м направлении. Таким направлением может стать движение ВНУТРЬ трёхмерных объектов.

Свойствами 4-х мерных сущностей обладают, например, эфир (радиоволны), радиоактивные ядра гелия (альфа-частицы), вирусы и так далее.

Выводы 4:

4.1. Четырёхмерные сущности невидимы. Например, размеры вируса лишь на два порядка превышают размеры атома. На острие иглы могут свободно разместиться 100 000 вирусов гриппа.
4.2. Логично предположить, что невидимые четырёхмерные сущности обитают в невидимом четырёхмерном пространстве.
4.3. Четырёхмерное пространство должно обладать очень тонкой структурой. Например, пространством обитания вируса является биологическая клетка, размеры которой измеряются нанометрами (1 нм = 1/1000000000 м).
4.4. Координатная «ось» четвёртого измерения направлена внутрь трёхмерного пространства.
4.5. Само по себе четырёхмерное пространство и четырёхмерные сущности трёхмерны. Однако ОТНОСИТЕЛЬНО трёхмерного пространства они обладают свойствами 4-го измерения.

5. ПРИНЦИП КОМПОЗИЦИИ

С появлением Теории относительности в сознании широких масс укоренилось представление о времени, как о четвёртой пространственной координате . Примирению разума со столь странной точкой зрения, очевидно, способствовали также различные временные графики, тренды и диаграммы. Удивительно только, что творческое воображение приверженцев такого взгляда на МНОГОмерное пространство почему-то всегда таинственным образом полностью иссякает на цифре «четыре».

Из физики известно, что существуют различные системы физических единиц, в частности, система СГС (сантиметр-грамм-секунда) , где в качестве независимых физических величин используются длина, масса и время. Все остальные величины выводятся из трёх основных. Таким образом, в роли трёх «китов» Мироздания в СГС выступают Пространство, Материя и Время.

В современной физике пространство и время искусственно объединены в единый четырёхмерный «континуум», называемый пространством Минковского . Многие искренне верят в то, что оно и есть то самое четырёхмерное пространство. Однако подобный взгляд на многомерное пространство чреват появлением целого ряда нелогичностей и несуразностей.

Во-первых, время, будучи независимой величиной, не может выступать в качестве свойства (пространственной характеристики) другой НЕЗАВИСИМОЙ величины – пространства.

Во-вторых, если всерьёз считать время четвёртой пространственной координатой, то в таком случае четырёхмерные сущности (то есть все мы, как обитатели «четырёхмерного» пространства-времени) должны обладать способностью перемещаться не только в пространстве, но и во времени! Однако мы знаем, что это не так. Таким образом, одна из якобы пространственных координат не обладает свойствами, которые присущи настоящим пространственным координатам.

В-третьих, настоящее пространство не может само по себе перемещаться относительно своих неподвижных обитателей ни в одном из своих направлений. Однако пространство-время такой фантастической способностью обладает. Более того, оно движется в четвёртом (временном) направлении исключительно избирательно: с разной скоростью по отношению к камням, растениям, животным и людям.

В-четвёртых, можно предположить, что по логике релятивистов 5-ти мерным пространством должна стать композиция пространства-времени с третьим «китом» Мироздания – материей.

В-пятых, напрашивается резонный вопрос: с какой системой единиц (СГСЭ или СГСМ) будет связано 6D-пространство?

Однако самым парадоксальным в релятивистском видении 4D-пространства является то, что на типичном релятивистском 3-х мерном графическом изображении якобы 4-х мерного пространства (рис. 5.1) 4-я координатная (временн`ая) ось отсутствует как таковая (!); зато хорошо виден результат присутствия материи (массы), которая в составе четырёхмерного «пространства-времени» даже не упоминается. :)

Наверное, именно поэтому словосочетание «пространство-время» так часто вызывает скепсис и ассоциируется с бородатым анекдотом про то, как в армии был найден собственный способ композиции пространства и времени, выразившийся в приказе рыть канаву от забора до обеда.

Выводы 5:

5.1. Совместное рассмотрение пространства и времени вполне допустимо.
5.2. Наделение времени свойствами пространства – искусственный приём, далёкий от реальности.
5.3. Релятивистский «четырёхмерный» пространственно-временной «континуум» не имеет ни малейшего отношения к реальному четырёхмерному пространству, тем более, к пространствам, размерность которых превышает 4, и является ещё одним примером математических фантазий на тему многомерности.

6. ПРИНЦИП СХЛОПЫВАНИЯ

Поскольку центральным вопросом любой модели 4-х мерного пространства является вопрос о выборе направления 4-ой пространственной координаты, в разделах 1 – 5 были рассмотрены различные подходы к решению этой проблемы.

Так, авторы «четырёхмерных» многогранников направляли четвёртую ось, куда хотели. Авторы многомерных массивов – в никуда. Вирусы и другие четырёхмерные сущности могли перемещаться внутрь трёхмерного пространства. Релятивисты же наделили обитателей 4-х мерного пространства (к которым они причислили и всех нас) способностью перемещаться во времени, как в обычном пространстве, значит, – в любом временн`ом направлении.

Казалось бы, все варианты уже исчерпаны, и настал момент определиться с выбором одного из известных направлений для четвёртой оси. Ан, нет! Авторы модной ныне «Теории струн» нашли ещё одно никем не занятое «направление». Глядя на смотанный поливочный шланг, они придумали все «лишние» координатные оси скрутить в колечки, трубочки и бублички. А чтобы объяснить, почему мы их не видим, наделили колечки размерами, которые «бесконечно малы даже в масштабе субатомных частиц» . Сторонники струнной теории считают, что все высшие пространственные измерения самопроизвольно схлопнулись, или по научному «компактифицировались» сразу после образования Вселенной.

Предвосхищая другой вопрос, – Зачем схлопнулись? – Теория струн выдвинула также гипотезу «ландшафта», в соответствии с которой никакого «схлопывания» вовсе и не было, все оси высших измерений целёхоньки, а невидимы они для нас по той причине, что наше 3-х мерное пространство, будучи гиперповерхностью (бр`аной) многомерного пространства Вселенной, якобы не позволяет нам взглянуть за пределы этой самой браны. К сожалению, ориентированы невидимые координатные оси в никому неизвестных направлениях.

Кроме перечисленного, нельзя не коснуться также других «заслуг» Теории струн.

Теория эта создавалась для описания физических закономерностей, проявляющихся на самом низком уровне рассмотрения материи, то есть на уровне субатомных частиц, а также их взаимодействий. Однако ситуация, когда одна гипотеза (Теория струн) пытается описать другие гипотезы (догадки о строении и о количестве элементарных частиц), представляется весьма сомнительной. Настораживает также полное отсутствие единого мнения по вопросу о реальном числе измерений многомерной Вселенной.

Существует множество способов свести многомерные струнные модели к наблюдаемому 3-х мерному пространству. Однако критерия для определения оптимального пути редукции не существует. В то же время, количество таких вариантов поистине огромно. По некоторым оценкам их число вообще бесконечно.

Кроме того, «математический аппарат теории струн столь сложен, что сегодня никто даже не знает точных уравнений этой теории. Вместо этого физики используют лишь приближенные варианты этих уравнений, и даже эти приближенные уравнения столь сложны, что пока поддаются только частичному решению» . При этом хорошо известно, что чем сложнее теория, тем дальше она отстоит от Истины.

Будучи исключительно продуктом воображения, Теория струн остро нуждается в экспериментальном подтверждении и проверке, однако, скорее всего, в обозримом будущем её нельзя будет ни подтвердить, ни проверить в силу очень серьёзных технологических ограничений. В этой связи некоторые учёные сомневаются, заслуживает ли вообще такая теория статуса научной.

Выводы 6:

6.1. Сосредоточив всё внимание на описании мельчайших частиц, Теория струн упустила из виду объяснение таких проявлений миров Высшей размерности, как вещие сны, астральные выходы, одержание, телепатия, пророчества и т. п.
6.2. То обстоятельство, что Теория струн хорошо описывает целый ряд явлений без привлечения старых физических теорий, подтверждает гипотезу о реальной многомерности Вселенной.

7. ПРИНЦИП БЕСКОНЕЧНОЙ РЕКУРСИИ

Принцип бесконечной рекурсии или фрактальности Мира основан на гипотезе о бесконечной делимости материи и берёт своё начало с трудов греческого философа Анаксагора (5-й век до Р. Х.), утверждавшего, что в каждой частице, какой бы малой она ни была, «есть города, населённые людьми, обработанные поля, и светит солнце, луна и другие звёзды, как у нас».

В философском плане данную идею разделял, к примеру, В. И. Ленин (1908), считавший, что «электрон так же неисчерпаем, как и атом, природа бесконечна...». В литературе – Джонатан Свифт со своим знаменитым Гулливером (1727). В поэзии – Валерий Брюсов (1922):

Быть может, эти электроны
Миры, где пять материков,
Искусства, знанья, войны, троны
И память сорока веков!
Ещё, быть может, каждый атом –
Вселенная, где сто планет;
Там – всё, что здесь, в объёме сжатом,
Но также то, чего здесь нет.
Их меры малы, но всё та же
Их бесконечность, как и здесь;
Там скорбь и страсть, как здесь, и даже
Там та же мировая спесь...

Сторонники рекурсивного подхода из числа современных учёных считают, что Вселенная состоит из бесконечного числа вложенных фрактальных уровней материи с подобными друг другу характеристиками. Пространство при этом имеет ДРОБНУЮ размерность стремящуюся к трём. Точное значение размерности зависит от строения материи и её распределения в пространстве.

Таким образом, здесь имеются два принципиальных момента, которые, фактически, обесценивают безусловно продуктивную идею о вложенности материи и планов Мироздания друг в друга. Во-первых, это совершенно бессмысленное вложение гигантской Вселенной в каждую микрочастицу собственной материи. Во-вторых, исключительно вольное обращение с понятием размерности.

Поскольку темой статьи является уяснение принципов многомерности пространства, остановимся на втором моменте более подробно.

Например, С. И. Сухонос , соглашаясь с тем, что даже паутинка трёхмерна, всерьёз обосновывает нульмерность Вселенной... для «внешнего наблюдателя». Однако, пребывая внутри замкнутого пространства Вселенной, мы не в праве делать какие-либо умозаключения о том, что находится за её внешней границей. Таким образом, любые рассуждения о мыслях «внешнего наблюдателя» относятся, в лучшем случае, к жанру научной фантастики.

Галактикам, в плане размерности, повезло несколько больше, чем Вселенной: их скопления автор признаёт одномерными, «неправильные» Галактики считает двухмерными, «правильные» (сферической формы) – трёхмерными, а статусом четырёхмерного пространства наделяет спиральные Галактики.

К сожалению, понятие «размерность» пространства в этих рассуждениях связано, прежде всего, с понятием «размер», затем – «форма» и меньше всего размерность зависит от числа измерений материи.

Выводы 7:

7.1. Бесконечность, будучи продуктом воображения, не реализуема в реальном мире, следовательно идея бесконечной рекурсии является не более, чем мифом.
7.2. Суждение о том, что часть (к примеру, атом) может содержать целое (Вселенную), является абсурдом.
7.3. Пространства с дробной размерностью не существуют по определению, а взгляд сторонников рекурсивного подхода на размерность противоречит общепринятым представлениям и здравому смыслу.

ЗАКЛЮЧЕНИЕ

1. На адекватное отражение реальной картины мира может претендовать не более, чем только одна из рассмотренных выше моделей 4-х мерного пространства, поскольку все они между собой попарно не совместны.

2. Все проблемы с пониманием многомерного пространства существуют исключительно внутри науки, в основном, в математике.

3. Базовые математические абстракции, прежде всего, «бесконечность», «непрерывность» и «нуль» не позволяют понять и описать пространства с размерностью выше трёх, поэтому все существующие представления о якобы многомерном пространстве выглядят смешно и наивно.

4. Разработка математических моделей пространств высшей размерности невозможна без пересмотра древних (2500-летней давности) догматов трёхмерной (то есть современной) математики.

ЛИТЕРАТУРА

1. Агни Йога. – 15 книг в 3-х томах. – Самара, 1992.
2. Клизовский А. И. Основы миропонимания Новой Эпохи. В 3-х томах. – Рига: Виеда, 1990.
3. Микиша А. М., Орлов В. Б. Толковый математический словарь: Основные термины. М.: Рус. яз., 1989. – 244 с.
4. Девис. П. Суперсила: Поиски единой теории природы. – М.: Мир, 1989. – 272 с.
5. Тессеракт: Материал из Википедии. – https://ru.wikipedia.org/wiki/Тессеракт
6. Измерения: видеофильм, часть 3 из 9 / Авторы: Йос Лейс, Этьен Жис, Орельян Альварез. – 14 мин (фрагмент – 2 мин).
7. Александр Котлин. Пространство-материя. Концепция. –
8. Специальная теория относительности. – https://ru.wikipedia.org/wiki/ Специальная_теория_относительности
9. Успенский П. Д. Tertium organum: Ключ к загадкам мира. – Типогpафiя СПб. Т-ва Печ. и Изд. дела «Тpyдъ», 1911.
10. СГС: Материал из Википедии. – http://ru.wikipedia.org/wiki/СГС
11. Четырёхмерное пространство: Материал из Википедии. – https://ru.wikipedia.org/wiki/Четырёхмерное_пространство
12. Пространство-время: Материал из Википедии. – https://ru.wikipedia.org/wiki/Пространство-время
13. Брайан Грин. Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории: Пер. с англ. / Общ. ред. В. О. Малышенко. – М.: Едиториал УРСС, 2004. – 288 с.
14. Сухонос С. И. Масштабная гармония Вселенной. – М.: Новый центр, 2002. – 312 с.
15. Александр Котлин. Как понять 10-ти мерное пространство? –

ПРИМЕЧАНИЯ

1. Вот что говорит об этом великий математик Гильберт: «вообразим три системы вещей, которые мы назовём точками, прямыми и плоскостями. Что это за ""вещи"" – мы не знаем, да и незачем нам это знать. Было бы даже греховно стараться это узнать».

2. На самом деле размерность пространства определяется не числом мифических, другими словами абстрактных «осей», а числом допустимых (для данного пространства) направлений движения, например: вперёд-назад, влево-вправо, вверх-вниз для пространства 3-х измерений.

3. Использование древних (возрастом 2500 лет) математических абстракций непрерывности, бесконечности и нуля (как порождения бесконечности) в задачах исследования многомерных пространств можно сравнить с применением топора для раскалывания атомных ядер в физике.

4. То, что наука называет полями (например, электромагнитное поле) или никак не называет (например, мир чувств, мир мыслей, ...), на самом деле являются реально существующими пространствами высшей размерности.

5. Прежде всего, это касается моделей многомерных пространств с координатными осями, скрученными в колечки, трубочки и бублички, которые рассматриваются в рамках так называемой «Теории струн».

6. Строго говоря, камни могут двигаться в 3-х направлениях: перемещаться ледниками, погружаться под воду, выходить из глубин океана на поверхность суши, разрушаться под воздействием волн или атмосферы. Однако эти движения происходят по нашим меркам очень медленно, со скоростью смены геологических эпох. То есть сущности «нулевой» размерности живут в других временных рамках, или с другой скоростью, не сопоставимой с той, что привычна нам.

7. Если быть объективными, то надо признать, что растения не одномерны, а трёхмерны, так как способны перемещаться не только вверх, но и в пределах поверхности: в результате размножения (корнями или семенами). Однако такое движение будет проявлено лишь через год (при неблагоприятных обстоятельствах – через несколько лет), то есть со скоростью значительно меньшей скорости роста растения.

Ежедневная аудитория портала Проза.ру - порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

Выбор редакции
Солдаты, одетые в костюмы химической защиты, пробираются через туннель в Кэмп Стенли, Южная Корея. В Корее угроза «туннельной войны» со...

Если Вы внезапно захворали и не можете справиться с тяжелой болезнью, обязательно прочитайте молитву Святому Луке об исцелении и...

Самое подробное описание: молитва что бы от любимого отстала соперница - для наших читателей и подписчиков.Любовь - очень сильное...

Данная статья содержит: молитва к пресвятой богородице основная - информация взята со вcех уголков света, электронной сети и духовных...
Очистить карму можно при помощи молитвы «На очищение рода» . Она снимает «кармические» или родовые проблемы нескольких поколений, такие...
Н. С. Хрущёв со своей первой женой Е. И. Писаревой. В первый раз Никита Хрущёв женился ещё в 20-летнем возрасте на красавице Ефросинье...
Черехапа редко балует нас промокодами. В июле наконец-то вышел новый купон на 2019 год. Хотите немного сэкономить на страховке для...
Спор можно открыть не раньше чем через 10 дней, после того как продавец отправит товар и до того как Вы подтвердите получение товара, но...
Рано или поздно, каждый покупатель сайта Алиэкспресс сталкивается с ситуацией, когда заказанный товар не приходит. Это может случится из...