Применение и использование вольфрама. Вольфрам металл


Вольфрам долгое время не находил практического применения. И только в конце XIX века замечательные свойства этого металла стали использоваться в промышленности. В настоящее время около 80 процентов добываемого вольфрама применяется в вольфрамовых сталях, около 15 процентов вольфрама используют для производства твердых сплавов. Важной областью применения чистого вольфрама и чистых сплавов из него является электротехническая промышленность, где он используется при изготовлении нитей накаливания электрических ламп, для деталей радиоламп и рентгеновских трубок, автомобильного и тракторного электрооборудования, электродов для контактной, атомно-водородной и аргоно-дуговой сварки, нагревателей для электропечей и др. Соединения вольфрама нашли применение в производстве огнестойких, водоустойчивых и утяжеленных тканей, как катализаторы в химической промышленности.
Ценность вольфрама особенно повышает его способность образовывать сплавы с различными металлами железом, никелем, хромом, кобальтом, молибденом, которые в различных количествах входят в состав стали. Вольфрам, добавленный в небольших количествах к стали, вступает в реакции с содержащимися в ней вредными примесями серы, фосфора, мышьяка и нейтрализует их отрицательное влияние. В результате сталь с добавкой вольфрама получает высокую твердость, тугоплавкость, упругость и устойчивость против кислот. Всем известно высокое качество клинков из дамасской стали, в которой содержится несколько процентов примеси вольфрама. Еще в. 1882 году вольфрам стали использовать при изготовлении пуль. В орудийной стали, бронебойных снарядах также содержится вольфрам. Сталь с присадкой вольфрама идет на изготовление прочных рессор автомобилей и железнодорожных вагонов, пружин и ответственных деталей различных механизмов. Рельсы, изготовленные из вольфрамовой стали, выдерживают намного большие нагрузки, и срок их службы значительно дольше, чем рельсов из обычных сортов стали. Замечательным свойством стали с добавкой 918 процентов вольфрама является ее способность к самозакаливанию, то есть при увеличении нагрузок и температуры эта сталь становится еще прочнее. Это свойство явилось основанием для изготовления целой серии инструментов из так называемой «быстрорежущей инструментальной стали». Применение резцов из нее позволило в свое время в несколько раз увеличить скорость обработки деталей на металлорежущих станках.
И все же инструменты, изготовленные из быстрорежущей стали, по скорости резания в 35 раз уступают инструментам из твердых сплавов. К их числу относятся соединения вольфрама с углеродом (карбиды) и бором (бориды). Эти сплавы по твердости близки к алмазам. Если условная твердость самого твердого из всех веществ алмаза выражается 10 баллами, то твердость вольфрамо-карбида (вокара) 9,8. К числу этих сплавов относится и широко известный победит сплав углерода с вольфрамом и добавкой кобальта. Сам победит вышел из употребления, но это название сохранилось применительно к целой группе твердых сплавов. В машиностроительной промышленности из твердых сплавов изготавливают также штампы для кузнечных прессов. Они изнашиваются примерно в тысячу раз медленнее стальных.
Особенно важной и интересной областью применения вольфрама является изготовление элементов накала (нитей) электрических ламп накаливания. Для изготовления нитей электроламп используют чистый вольфрам. Свет, излучаемый раскаленной нитью вольфрама, близок к дневному. А количество света, излучаемое лампой с вольфрамовой нитью, в несколько раз превышает излучение ламп из нитей, изготовленных из других металлов (осьмия, тантала). Световое излучение (световая отдача) электроламп с вольфрамовой нитью в 10 раз выше, чем у ранее применявшихся ламп с угольной нитью. Яркость свечения, долговечность, экономичность в потреблении электроэнергии, небольшие затраты металла и простота изготовления электрических ламп с вольфрамовой нитью обеспечили им самое широкое применение при освещении.
Широкие возможности применения вольфрама обнаружились в результате открытия, сделанного известным американским физиком Робертом Уилъямсом Вудом. В одном из опытов Р. Вуд обратил внимание на то, что свечение вольфрамовой нити с торцовой части катодной трубки его конструкции продолжается и после отключения электродов от аккумулятора. Это настолько поразило его современников, что Р. Вуда стали называть чародеем. Исследования показали, что вокруг нагретой вольфрамовой нити происходит термическая диссоциация молекул водорода они распадаются на отдельные атомы. После отключения энергии атомы водорода снова соединяются в молекулы, и при этом выделяется большое количество тепловой энергии, достаточное, чтобы раскалить тонкую вольфрамовую нить и вызвать ее свечение. На этом эффекте разработан новый вид сварки металлов атомно-водородный, давший возможность сваривать различные стали, алюминий, медь, латунь в тонких, листах с получением чистого и ровного шва. Металлический вольфрам при этом используется в качестве электродов. Вольфрамовые электроды применяются также и при более широко распространенной аргонодуговой сварке.
В химической промышленности вольфрамовая проволока, очень стойкая против кислот и щелочей, применяется для изготовления сеток различных фильтров. Вольфрам нашел применение также как катализатор с его помощью изменяют скорость химических реакций в технологическом процессе. Группа вольфрамовых соединении в промышленности и лабораторных условиях используется как реактивы для определения белка и других органических и неорганических соединений.
Вольфрамовые соединения используются и в полиграфической промышленности в качестве красок (шафрановая, вольфрамовая синь, вольфрамовая желть). Пиротехники добавляют соединения вольфрама в состав горючих смесей и получают разноцветные огни ракет и фейерверков. В свето-печатании используется бумага, обработанная вольфрамитом натрия. В текстильной промышленности солью вольфрамовой кислоты вольфраматом натрия протравливают ткани при крашении. Такие ткани непромокаемы и не боятся огня. Дерево тоже становится огнестойким, если его обработать этим веществом.

Дителлурид вольфрама WTe 2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К).

Коэффициент температурного расширения вольфрама близок к таковому у кремния, поэтому на вольфрамовые подложки припаивают кремниевые кристаллы мощных транзисторов – чтобы избежать растрескивания этих кристаллов при нагреве.
Даже неполный перечень применения вольфрама и его соединений в промышленности дает представление о высокой ценности этого элемента. Сейчас трудно представить, как бы любой из нас смог обходиться даже в повседневной жизни без вольфрама. И конечно, возможности ого использования будут раскрываться и дальше.
Почти вся мировая вольфрамовая промышленность в период первой мировой войны была сосредоточена в Германии. Но сырье для нее вольфрамовые концентраты поставлялись из других стран. Поэтому, изолированные от поставщиков сырья, немцы вынуждены были перерабатывать шлаки, скопившиеся около оловянных плавилен (вспомним «волчью пену»!) и получали из них около 100 тонн вольфрама в год.
В это же время потребности военной промышленности в вольфраме вызвали «вольфрамовую лихорадку» во многих странах. В России поставщиками вольфрамовых руд стали Урал и Забайкалье. Стараясь нажиться па «вольфрамовой лихорадке», предприниматели не очень считались с интересами государства. Так, промышленник Толмачев, владевший Забайкальскими месторождениями Букука и Оланду, решил сдать их в аренду шведской фирме. И только своевременное вмешательство Геологического комитета предотвратило это. В условиях военного времени рудники у этого дельца были реквизированы.

Искусственный радионуклид 185 W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184 W применяется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Перед началом первой мировой войны в 1913 году в мире было произведено 8 123 тонны вольфрамового концентрата (с содержанием 60 процентов трехокиси вольфрама). Перед второй мировой войной его производство быстро увеличилось и в 1940 году составило 44 013 тонн (без Советского Союза). По данным Горного бюро США, в 1972 году мировое производство вольфрама составило около 38 400 тонн.

Применение вольфрамовых сплавов

Вольфрамовые сплавы обладают многими замечательными качествами. Так называемый тяжелый металл (из вольфрама, никеля и меди) служит для изготовления контейнеров, в которых хранят радиоактивные вещества. Его защитное действие на 40% выше, чем у свинца. Этот сплав применяют и при радиотерапии, так как он создает достаточную защиту при сравнительно небольшой толщине экрана.

Сплав карбида вольфрама с 16% кобальта настолько тверд, что может частично заменить алмаз при бурении скважин.

Псевдосплавы вольфрама с медью и серебром – превосходный материал для рубильников и выключателей электрического тока высокого напряжения: они служат в шесть раз дольше обычных медных контактов.

О применении вольфрама в волосках электроламп говорилось в начале статьи. Незаменимость вольфрама в этой области объясняется не только его тугоплавкостью, но и пластичностью. Из одного килограмма вольфрама вытягивается проволока длиной 3,5 км, т.е. этого килограмма достаточно для изготовления нитей накаливания 23 тыс. 60-ваттных лампочек. Именно благодаря этому свойству мировая электротехническая промышленность потребляет всего около 100 т вольфрама в год.

В последние годы важное практическое значение приобрели химические соединения вольфрама. В частности, фосфорно-вольфрамовая гетерополикислота применяется для производства лаков и ярких, устойчивых на свету красок. Раствор вольфрамата натрия Na 2 WO 4 придает тканям огнестойкость и водонепроницаемость, а вольфраматы щелочноземельных металлов, кадмия и редкоземельных элементов применяются при изготовлении лазеров и светящихся красок.

Имеющий светло-серый цвет. В периодической системе Менделеева ему принадлежит 74 порядковый номер. Химический элемент является тугоплавким. В своем составе он содержит 5 стабильных изотопов.

Химические свойства вольфрама

Химическая стойкость вольфрама на воздухе и в воде достаточно высока. При нагревании подвержен окислению. Чем больше температура, тем выше скорость окисления химического элемента. При температуре, превышающей 1000°С, вольфрам начинает испаряться. При комнатной температуре , соляная, серная, плавиковая и азотная кислоты не могут оказывать на вольфрам никакого действия. Смесь азотной и плавиковой кислот растворяют вольфрам. Ни в жидком, ни в твердом состоянии вольфрам не смешивается с золотом, серебром, натрием, литием. Также не происходит взаимодействия с , магнием, кальцием, ртутью. Вольфрам в тантале и ниобии, а с хромом и может образовывать растворы как в твердом, так и в жидком состоянии.

Применение вольфрама

Применяют вольфрам в современной промышленности как в чистом виде, так и в . Вольфрам относится к износоустойчивым металлам. Часто сплавы, имеющих в составе вольфрам, применяют для изготовления лопастей турбин и клапанов авиадвигателей. Также этот химический элемент нашел свое применение для изготовления различных деталей в рентгенотехнике и радиоэлектронике. Вольфрам используют для нитей электроламп.

Химические соединения вольфрама в последнее время нашли свое практическое применение. Гетерополикислота фосфорно-вольфрамовая используется при производстве ярких красок и лаков, устойчивых на свету. Для изготовления светящихся красок и изготовлении лазеров применяются вольфраматы редкоземельных элементов, щелочноземельных металлов и кадмия.

Сегодня традиционные обручальные кольца из золота стали заменять изделиями из других металлов. Популярность приобрели кольца обручальные из карбида вольфрама. Такие изделия отличаются высокой прочностью. Зеркальная полировка кольца со временем не тускнеет. Изделие сохранит свое первоначальное состояние на весь срок использования.

Вольфрам используют в виде легирующей добавки для стали. Это придает стали прочность и твердость при высокой температуре. Таким образом, инструменты, изготовленные из вольфрамовой стали, обладают способностью выдерживать весьма интенсивные процессы металлообработки.

Вольфрам считается самым тугоплавким из известных металлов. Впервые был получен в 18 веке, но промышленное использование началось гораздо позже, с развитием технологии производства.

Основные характеристики

Как самый тугоплавкий металл, вольфрам имеет специфические свойства:

  • Температура плавления вольфрама - примерно соответствует температуре солнечной короны - 3422 °С.
  • Вместе с этим, плотность чистого вольфрама ставит его в один ряд с наиболее плотными металлами. Его плотность практически равна плотности золота - 19,25 г/см 3 .
  • Теплопроводность вольфрама зависит от температуры и составляет от 0,31 кал/см·сек·°С при 20°С до 0,26 кал/см·сек·°С при 1300°С.
  • Теплоемкость также близка к золоту и составляет 0.15·10 3 Дж/(кг·К).

Металл имеет кубическую объемноцентрированную кристаллическую решетку. Несмотря на высокую твердость, вольфрам в нагретом состоянии очень пластичен и ковок, что позволяет изготавливать из него тонкую проволоку, имеющую широкое применение.

Имеет серебристо-серый цвет, который не меняется на открытом воздухе, поскольку вольфраму присуща высокая химическая стойкость, а с кислородом он реагирует только при температуре выше красного каления.

Химические свойства элемента, как правило, начинают проявляться при нагреве выше нескольких сотен градусов. В обычных условиях он не взаимодействует с большинством известных кислот, кроме смеси плавиковой и азотной кислот.
В присутствии определенных окислителей может реагировать с расплавами щелочей. При этом для начала реакции требуется нагрев до температуры 400 - 500 °С, а далее реакция идет бурно, с выделением тепла.

Некоторые соединения, особенно карбид вольфрама, обладают очень высокой твердостью и находят применение в металлургическом производстве для обработки твердых сплавов.

Приведенные характеристики вольфрама определяют специфику областей применения металла, как в чистом виде, так и в составе различных сплавов и химических соединений.
Вольфрам входит в состав многих жаростойких сплавов в качестве легирующей добавки для повышения твердости, температуры плавления и коррозионной стойкости.
Близость плотности и теплоемкости вольфрама и золота теоретически может служить для подделки золотых слитков, однако это легко можно выявить при измерении электрического сопротивления и при переплавке золотого слитка.

Получение вольфрама

В чистом, самородном виде металл в природе не встречается. Большинство месторождений образовано оксидами. Содержание соединений в пересчете на чистый металл в рудном месторождении составляет 0.2 - 2%.
Химическая стойкость и высокая температура плавления допускают получение вольфрама из руды только при использовании специфических методик.

В основе большинства методов промышленного получения вольфрама лежит восстановление металла из его оксида. Первая стадия производства состоит в обогащении вольфрамосодержащей руды. Затем при помощи операций выщелачивания и восстановления получают оксид WO 3 , который восстанавливают до чистого металла в атмосфере водорода. Температура процесса составляет около 700 °С.

В результате реакции получается тонкодисперсный металлический порошок. Высокая температура плавления не позволяет оформить металл в виде слитков, поэтому порошок вольфрама сначала прессуют под высоким давлением, а затем спекают в среде водорода, используя нагрев до температуры 1300 °С. Через полученные бруски пропускают мощный электрический ток. В результате высокого переходного сопротивления между зернами металла происходит нагрев и плавление заготовки.

Очистку полученного слитка производят методом зонной плавки, подобно технологии получения сверхчистых полупроводников. Производство вольфрама по данной технология позволяет получить металл высокой степени чистоты без дополнительных операций очистки.

При производстве сплавов, все составляющие добавляются еще перед стадией прессования порошка, поскольку в дальнейшем это сделать уже невозможно. В процессе прессовки, спекания и дальнейшей обработки заготовки (прессование, прокатка) обеспечивается равномерное распределение примесей в сплаве.

Обработка вольфрама производится при температурах около полутора тысяч градусов. При таком нагреве металл становится очень пластичным и допускает ковку, штамповку. Тонкая проволока для спиралей ламп накаливания изготавливается методом волочения. При этом кристаллы металлы располагаются вдоль проволоки, повышая ее прочность. Поскольку к спиралям ламп предъявляются высоки требования по однородности, вольфрамовый провод дополнительно подвергают операциям электрохимического полирования.

Применение вольфрама

Большинство областей применения вольфрама используют такие его качества, как высокая температура плавления, плотность и пластичность. Вольфрам незаменим в следующих областях:

  • Чистый вольфрам, это единственный металл, который применяется в нитях накаливания осветительных ламп, радиолампах, кинескопах и прочих электровакуумных приборах;
  • В чистом виде и в составе сплавов используется при производстве сердечников подкалиберных бронебойных снарядов и пуль;
  • Высокая плотность вольфрама позволяет изготавливать роторы малогабаритных гироскопов ракетной техники и космических аппаратов;
  • Изготовление неплавящихся электродов при аргонно-дуговой сварке;
  • Устройства защиты от ионизирующих излучений из вольфрама эффективнее, чем традиционные свинцовые. Использование вольфрама экономически выгодно, несмотря на более высокую стоимость, чем у свинца. Это вызвано тем, что расход вольфрама при тождестве технических характеристик изделия намного меньше.
  • Изделия из вольфрама не нуждаются в защите от коррозии благодаря низкой химической активности при нормальных температурных условиях.

Соединения вольфрама с углеродом более известны как «победит». Их высокая твердость используется в режущих напайках металлообрабатывающих инструментов - резцов, сверл, фрез. Инструменты с победитовыми напайками используются для обработки практически любых материалов, начиная от древесины, где почти не требуют периодической заточки, до любых пород камня. Для заточки победитовых инструментов требуются абразивы с самой высокой твердостью. В полной мере этому соответствуют алмазные и эльборовые абразивы имеющие самую высокую твердость среди всех известных.

Победитовые напайки крепятся к рабочим кромкам инструмента при помощи пайки медью. В качестве флюса используется бура.

Карбид вольфрама используется в ювелирных изделиях, в частности, в кольцах. Высокая твердость материала позволяет сохранить блеск изделия в течение всего срока службы.

Победит изготавливают порошковым методом, используя для скрепления кристаллом карбида вольфрама кобальт.

Сплавы на основе вольфрама

Сплавы вольфрама возможно получить исключительно методом порошковой металлургии. Это вызвано большой разницей температур плавления входящих в состав сплава металлов. Порошки исходных составляющих после смешивания прессуются, а затем подвергаются спеканию. В результате капиллярных сил более легкоплавкие металлы заполняют пространство между зернами вольфрама, образуя монолитный сплав. На границах зерен образуются твердые растворы компонентов сплава.

Наибольшее распространение получили сплавы вольфрама с медью, железом и никелем. Самые распространенные сплавы ВНЖ и ВНМ включают в себя вольфрам - никель - железо и вольфрам - никель - медь.

Для достижения особых характеристик в состав могут входить также серебро, хром, кобальт и молибден.

Вольфрамовые сплавы находят применение для изготовления деталей и устройств, в которых важна высокая плотность при малых габаритных размерах. Это всевозможные противовесы, маховики, грузы центробежных регуляторов, сердечники пуль и снарядов.

Известно не очень много марок вольфрама. В первую очередь, это технически чистый вольфрам - ВЧ.

Используемые в промышленности марки вольфрама обычно включают в себя некоторые добавки. Материал, легированный лантаном, обозначается как ВЛ, иттрием - ВИ. Указанные легирующие добавки еще более улучшают механические и технологические качества металла.

Сплавы с рением - ВР5, ВР20 - используются в производстве высокотемпературных термопар.

Легирование торием повышает эмиссионные свойства вольфрама, что особенно важно при изготовлении катодов мощных электровакуумных ламп. Данная добавка также улучшает способность к зажиганию электрической дуги при аргонно-дуговой сварке.

Сплавы вольфрама с медью и серебром используются для изготовления контактов сильноточной коммутационной аппаратуры. Медь и серебро при высокой электропроводности не обладают высокой механической прочностью. При прохождении высоких токов возможно расплавление контактных групп. Контакты из вольфрамовых сплавов свободны от этих недостатков, не смотря на несколько большее электрическое сопротивление.

Высокая плотность сплавов позволят использовать их для изготовления контейнеров для хранения радиоактивных веществ, экранов для защиты от γ-излучения.

Вольфрам. Химический элемент, символ W (лат. Wolframium, англ. Tungsten, франц. Tungstene, нем. Wolfram , от нем. Wolf Rahm - волчья слюна, пена ). Имеет порядковый номер 74, атомный вес 183, 85, плотность 19, 30 г/см 3 , температуру плавления 3380 ° С, температуру кипения 5680 ° С.

Вольфрам - металл светло-серого цвета, при комнатной температуре обладает высокой коррозионной стойкостью в воде и на воздухе, а также в кислотах и щелочах. Он начинает немного окисляться на воздухе при 400-500 ° С (при температуре красного каления) и интенсивно окисляется при более высоких температурах. Вольфрам образует два устойчивых окисла: WO 3 и WO 2 . С водородом вольфрам не взаимодействует практически до самого плавления, а с азотом начинает вступать в реакцию только при температурах более 2000 ° С. С хлором вольфрам образует хлориды WCl 2 , WCl 4 , WCl 5 , WCl 6 . Твёрдый углерод и некоторые содержащие его газы при 1100-1200 ° С реагируют с вольфрамом, образуя карбиды WC и W 2 C.

Вольфрам растворяется в смесях плавиковой и азотной кислот , также растворяется в расплавленных щелочах при доступе воздуха и особенно окислителей. Отдельные кислоты на вольфрам не действуют.

Вольфрам очень высокой чистоты пластичен при комнатной температуре. По прочности при высоких температурах вольфрам превосходит все остальные металлы. На механические свойства вольфрама сильное влияние оказывают примеси. Содержание в металле небольших количеств примесей делает его очень хрупким (хладноломким). Наиболее отрицательное влияние на свойства вольфрама оказывают кислород, азот, углерод, железо, фосфор, кремний.

Вольфрам широко используют в радиоламповой, радиотехнической и электронно-вакуумной промышленности для изготовления нитей накаливания, нагревателей и экранов высокотемпературных вакуумных печей, электрических контактов, катодов рентгеновских трубок.

В металлургии вольфрамом легируют стали и используют при изготовлении твёрдых сплавов (например, металлокерамический сплав на основе карбида вольфрама - победит), в химической промышленности из него изготовляют краски и катализаторы, в ракетной технике - изделия, работающие при очень высоких температурах, в атомной промышленности - тигли для хранения радиоактивных материалов, т.к. защитное действие у сплава вольфрама, никеля и меди выше, чем у свинца . Сплавы с металлами получают спеканием, а не давлением потому, что при температуре плавления вольфрама многие металлы превращаются в пар.

Вольфрам применяют также для нанесения покрытий: на детали, работающие при очень высоких температурах в восстановительной и нейтральной средах; на литейные формы из молибдена , используемые для получения прутков сильно радиоактивных металлов; на детали, работающие на трение.

Также распространены сплавы на основе вольфрама с рением. Добавка рения (до 20-25%) снижает температуру перехода вольфрама в хрупкое состояние, резко повышает его пластичность при нормальной температуре и улучшает технологические свойства. Сплавы получают методом порошковой металлургии и плавлением в электродуговых вакуумных печах. Из этих сплавов изготовляют термопары, электрические контакты.

Сплавы вольфрама с молибденом пригодны для работы при температурах более 3000 ° С, применяют их для сопел реактивных двигателей.

При нагревании вольфрама выше 400 ° С на его поверхности образуется порошкообразный окисел жёлтого цвета, который заметно испаряется при температурах более 800 ° С. Поэтому вольфрам может быть использован как высокопрочный материал при высоких температурах только при надёжной защите поверхности изделия от воздействия окисляющей среды или при работе в нейтральной среде или в вакууме. Для кратковременной защиты вольфрама от окисления при 2000-3000 ° С применяют керамические эмалевидные покрытия, содержащие тугоплавкие соединения в качестве основного заполнителя им тугоплавкое связующее стекло.

Мировое производство вольфрама - примерно 30 тыс. т в год. С начала нашего века оно не раз испытывало резкие взлеты и столь же крутые спады. И сейчас является сугубо стратегическим металлом.Из вольфрамовой стали и других сплавов, содержащих или его карбиды, изготовляют танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей. - непременная составная часть лучших марок инструментальной стали. В целом металлургия поглощает почти 95% всего добываемого вольфрама.

Характерно, что она широко использует не только чистый вольфрам, но главным образом более дешевый ферровольфрам - сплав, содержащий 80% W и около 20% Fe; получают его в электродуговых печах).Вольфрамовые обладают многими замечательными качествами. Так называемый тяжелый металл (из вольфрама, никеля и меди) служит для изготовления контейнеров, в которых хранят радиоактивные . Его защитное действие на 40% выше, чем у свинца. Этот сплав применяют и при радиотерапия, так как он создает достаточную защиту при сравнительно небольшой толщине экрана.

Сплав карбида вольфрама с 16% кобальта настолькотверд, что может частично заменить при бурении скважин. Псевдосплавы вольфрама с медью и серебром - превосходный материал для рубильников и выключателей электрического тока высокого напряжения: они служат в шесть раз дольше обычных медных контактов. О применении вольфрама в волосках электроламп говорилось в начале статьи. Незаменимость вольфрама в этой области объясняется не только его тугоплавкостью, но и пластичностью.? Из одного килограмма вольфрама вытягивается проволока длиной 3,5 км, т. е. этого килограмма достаточно для изготовления нитей накаливания 23 тыс. 60-ваттных лампочек.

Именно благодаря этому свойству мировая электротехническая промышленность потребляет всего около 100 т вольфрама в год. I В последние годы важное практическое значение приобрели химические соединения вольфрама. В частности, фосфорно-вольфрамовая гетерополикислота применяется для производства лаков и ярких, устойчивых на свету красок. Раствор вольфрамата натрия Na 2 WО 4 придает тканям огнестойкость и водонепроницаемость, а щелочноземельных металлов, кадмия и редкозе мельных элементов применяются при изготовлении лазеров и светящихся красок.

ПОЧЕМУ «ВОЛЬФРАМ»? Это слово немецкого происхождения. Известно, что раньше оно относилось не к металлу, а к главномуминералу вольфрама - вольфрамиту. Есть предположение, чтоэто слово было чуть ли не бранным. В XVI-XVII вв. «вольфрам»считали минералом олова. (Он действительно часто сопутствует оловянным рудам.) Но из руд, содержащих , олова выплавлялось меньше, кто-то словно «пожирал» его.Так и появилось название, отразившее «волчьи повадки» вольфрама,- по-немецки Wolf - волк, а древне германское Ramm - б а рай.

«ВОЛЬФРАМ» ИЛИ «ТУНГСТЕН»? В известном химическом реферативном журнале США или в справочных изданиях по всем химическим элементам Меллора (Англия) и Паскаля (Франция) тщетно было бы искать металл под названием «вольфрам». Элемент № 74 называется в них иначе - тунгстен. Даже символ W (начальная буква слова Wolfram) получил всеобщее распространение лишь в последние годы: еще недавно в Италии и Франции писали Тu (начальные буквы от слова tungstene). Откуда такая путаница? Ее основы заложены историей открытия элемента № 74.В 1783 г. испанские химики братья Элюар сообщили об открытии нового элемента.

Разлагая саксонский минерал «вольфрам» азотной кислотой, они получили «кислую землю»- желтый осадок окиси какого-то металла, растворимый в аммиаке. В исходный минерал эта окись входила вместе с окислами железа и марганца. Братья Элюар предложили назвать новый элемент вольфрамом, а сам минерал - вольфрамитом.Итак, кто открыл вольфрам? Братья Элюар? И да, и нет. Да - потому, что они первые сообщили об этом открытии в печати. Нет - потому, что за два года до этого - в 1781 г.- знаменитый шведский ученый Карл Вильгельм Шееле обнаружил такую же точно «желтую землю», обрабатывая азотной кислотой другой минерал. Его называли просто «tungsten», т. е. «тяжелый камень» (по-шведски tung - тяжелый, sten - камень). Шееле далее нашел, что эта «земля» отличается от аналогичной молибденовой по цвету и некоторым другим свойствам, а в минерале она связана с окисью кальция. В честь Шееле минерал тунгстен переименовали в «шеелит». Остается добавить, что один из братьев Элюар был учеником Шееле и в 1781 г. работал в его лаборатории… Кто же открыл вольфрам?Обе стороны проявили в этом вопросе должное благородство; Шееле никогда не претендовал на открытие вольфрама, а братья Элюар не настаивали на своем приоритете.

НАЗВАНИЕ «ВОЛЬФРАМОВАЯ БРОНЗА» ОБМАНЧИВО. Нередко приходится слышать о вольфрамовых бронзах. Что это эа ? Внешне они очень красивы. Золотистая вольфрамовая бронза имеет состав Na 2 O x WO 2 x WO 3 , а синяя - Na 2 O x WO 2 x 4WO 3 ; пурпурно-красная и фиолетовая занимают промежуточное положение - соотношение WO 3 к WO2 в них меньше четырех, но больше единицы. Как видно из формул, эти не содержат ни меди, ни цинка, ни олова, т. е., строго говоря, они вовсе не бронзы. Они вообще не , так как здесь нет чисто металлических соединений: и вольфрам, и окислены. Бронзу они, однако, напоминают не только цветом и блеском, но и твердостью, устойчивостью к химическим реагентам и большой электропроводностью.

ПЕРСИКОВЫЙ ЦВЕТ. Приготовить эту краску было очень трудно; она не красная и не розовая, а какого-то промежуточного цвета и с зеленоватым оттенком. По преданию, для того чтобы ее открыть, пришлось провести около 8000 опытов с различными металлами и минералами. В XVII в. в персиковый цвет окрашивали наиболее дорогие фарфоровые изделия для китайского императора на заводе в провинции Шаньсн. Когда секрет изготовления этой краски был открыт, оказалось, что ее основу составляет окись вольфрама.

ПОХОЖЕ НА СКАЗКУ. Это случилось в 1911 г. В провинцию Юньнань приехал из Пекина студент по имени Ли. Целыми днями пропадая в горах, он искал какой-то камень, по его словам -оловянный. Но ничего не находил.У хозяина дома, где поселился студент, была молодая дочь Сяо-ми. Девушка жалела неудачливого искателя особых камней и вечером, подавая ему ужин, рассказывала незамысловатые истории. В одной из них речь шла о необыкновенной печи, построенной из темных камней, срывавшихся со скалы прямо на задний двор их дома. Печь оказалась очень удачной - она исправно служила хозяевам многие годы. Сяо-ми даже подарила студенту один из этих камней - коричневый, обкатанный, тяжелый, как . Оказалось, что это был чистый вольфрамит…Об

ИЗОТОПАХ ВОЛЬФРАМА. Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами 180, 182, 183, 184 самый распрост раненный, его доля 30,64%) и 186. Из довольно многочисленных искусственных радиоактивных изотопов элемента № 74 практически важны только три: вольфрам -181 с периодом полураспада 145 дней, вольфрам-185 (74,5 дня) и вольфрам-187 (23,85 часа). Все три эти изотопа образуются в ядерных реакторах при обстреле нейтронами природной смеси изотопов вольфрама.

Выбор редакции
12 января 2010 года в 16 часов 53 минуты крупнейшее за последние 200 лет землетрясение магнитудой 7 баллов в считанные минуты погубило,...

Незнакомец, советуем тебе читать сказку "Каша из топора" самому и своим деткам, это замечательное произведение созданное нашими предками....

У пословиц и поговорок может быть большое количество значений. А раз так, то они располагают к исследованиям большим и малым. Наше -...

© Зощенко М. М., наследники, 2009© Андреев А. С., иллюстрации, 2011© ООО «Издательство АСТ», 2014* * *Смешные рассказыПоказательный...
Флавий Феодосий II Младший (тж. Малый, Юнейший; 10 апр. 401 г. - † 28 июля 450 г.) - император Восточной Римской империи (Византии) в...
В тревожный и непростой XII век Грузией правила царица Тамара . Царицей эту великую женщину называем мы, русскоговорящие жители планеты....
Житие сщмч. Петра (Зверева), архиепископа ВоронежскогоСвященномученик Петр, архиепископ Воронежский родился 18 февраля 1878 года в Москве...
АПОСТОЛ ИУДА ИСКАРИОТ Апостол Иуда ИскариотСамая трагическая и незаслуженно оскорбленная фигура из окружения Иисуса. Иуда изображён в...
Когнитивная психотерапия в варианте Бека - это структурированное обучение, эксперимент, тренировки в ментальном и поведенческом планах,...