Составить уравнение тренда. Оценка параметров уравнения тренда


В главе 2 было рассмотрено понятие о тенденции временного ряда, т.е. тенденции динамики развития изучаемого показате­ля. Задача данной главы состоит в том, чтобы рассмотреть ос­новные типы таких тенденций, их свойства, отражаемые с большей или меньшей степенью полноты уравнением линии тренда. Укажем при этом, что в отличие от простых систем ме­ханики тенденции изменения показателей сложных социальных, экономических, биологических и технических систем только с некоторым приближением отражаются тем или иным уравне­нием, линией тренда.

В данной главе рассматриваются далеко не все известные в математике линии и их уравнения, а лишь набор их сравнитель­но простых форм, который мы считаем достаточным для ото­бражения и анализа большинства встречающихся на практике тенденций временных рядов. При этом желательно всегда вы­бирать из нескольких типов линий, достаточно близко выра­жающих тенденцию, более простую линию. Этот «принцип простоты» обоснован тем, что чем сложнее уравнение линии тренда, чем большее число параметров оно содержит, тем при равной степени приближения труднее дать надежную оценку этих параметров по ограниченному числу уровней ряда и тем больше ошибка оценки этих параметров, ошибки прогнозиру­емых уровней.

4.1. Прямолинейный тренд и его свойства

Самым простым типом линии тренда является прямая ли­ния, описываемая линейным (т.е. первой степени) уравнением тренда:

где - выровненные, т.е. лишенные колебаний, уровни тренда для лет с номеромi;

а - свободный член уравнения, численно равный среднему выровненному уровню для момента или периода времени, принятого за начало отсчета, т.е. для

t = 0;

b - средняя величина изменения уровней ряда за единицу из­менения времени;

ti - номера моментов или периодов времени, к которым от­носятся уровни временного ряда (год, квартал, месяц, дата).

Среднее изменение уровней ряда за единицу времени - глав­ный параметр и константа прямолинейного тренда. Следова­тельно, этот тип тренда подходит для отображения тенденции примерно равномерных изменений уровней: равных в среднем абсолютных приростов или абсолютных сокращений уровней за равные промежутки времени. Практика показывает, что та­кой характер динамики встречается достаточно часто. Причи­на близких к равномерному абсолютных изменений уровней ряда состоит в следующем: многие явления, как, например, урожай­ность сельскохозяйственных культур, численность населения региона, города, сумма дохода населения, среднее потребление какого-либо продовольственного товара и др., зависят от боль­шого числа различных факторов. Одни из них влияют в сторо­ну ускоренного роста изучаемого явления, другие - в сторону замедленного роста, третьи - в направлении сокращения уров­ней и т.д. Влияние разнонаправленных и разноускоренных (за­медленных) сил факторов взаимно усредняется, частично взаимно погашается, а равнодействующая их влияний приобре­тает характер, близкий к равномерной тенденции. Итак, равно­мерная тенденция динамики (или застоя) - это результат сложения влияния большого количества факторов на изменение изучаемого показателя.

Графическое изображение прямолинейного тренда - прямая линия в системе прямоугольных координат с линейным (ариф­метическим) масштабом на обеих осях. Пример линейного тренда дан на рис. 4.1.

Абсолютные изменения уровней в разные годы не были точно одинаковыми, но общая тенденция сокращения численности занятых в народном хозяйстве очень хорошо отражает­ся прямолинейным трендом. Его параметры вычислены в гл. 5 (табл. 5.3).

Основные свойства тренда в форме прямой линии таковы:

Равные изменения за равные промежутки времени;

Если средний абсолютный прирост - положительная вели­чина, то относительные приросты или темпы прироста посте­пенно уменьшаются;

Если среднее абсолютное изменение - отрицательная вели­чина, то относительные изменения или темпы сокращения по­степенно увеличиваются по абсолютной величине снижения к предыдущему уровню;

Если тенденция к сокращению уровней, а изучаемая вели­чина является по определению положительной, то среднее изме­нение b не может быть больше среднего уровняа;

При линейном тренде ускорение, т.е. разность абсолютных изменений за последовательные периоды, равно нулю.

Свойства линейного тренда иллюстрирует табл. 4.1. Урав­нение тренда: = 100 +20 *ti.

Показатели динамики при наличии тенденции сокращения уровней приведены в табл. 4.2.

Таблица 4.1

Показатели динамики при линейном тренде к увеличению уровней = 100 +20 *ti.

Номер периода ti

Темпы (цеп­ные), %

Ускоре­ние

Таблица 4.2

Показатели динамики при линейном тренде сокращения уровней: = 200 -20 *ti.

Номер периода ti

Абсолютное изме­нение к предыду­щему периоду

Темп к предыдущему периоду, %

Ускоре­ние

Кривые роста, описывающие закономерности развития явлений во времени – это результат аналитического выравнивания динамических рядов. Выравнивание ряда с помощью тех или иных функций в большинстве случаев оказывается удобным средством описания эмпирических данных. Это средство при соблюдении ряда условий можно применить и для прогнозирования. Процесс выравнивания состоит из следующих основных этапов:

Выбора типа кривой, форма которой соответствует характеру изменения динамического ряда;

Определения численных значений (оценка) параметров кривой;

Апостериорного контроля качества выбранного тренда.

В современных ППП все перечисленные этапы реализуются одновременно, как правило, в рамках одной процедуры.

Аналитическое сглаживание с использованием той или иной функции позволяет получить выровненные, или, как их иногда не вполне правомерно называют, теоретические значения уровней динамического ряда, т. е. уровни, которые наблюдались бы, если бы динамика явления полностью совпадала с кривой. Эта же функция с некоторой корректировкой или без нее, применяется в качестве модели для экстраполяции (прогноза).

Вопрос о выборе типа кривой является основным при выравнивании ряда. При всех прочих равных условиях ошибка в решении этого вопроса оказывается более значимой по своим последствиям (особенно для прогнозирования), чем ошибка, связанная со статистическим оцениванием параметров.

Поскольку форма тренда объективно существует, то при выявлении ее следует исходить из материальной природы изучаемого явления, исследуя внутренние причины его развития, а также внешние условия и факторы на него влияющие. Только после глубокого содержательного анализа можно переходить к использованию специальных приемов, разработанных статистикой.

Весьма распространенным приемом выявления формы тренда является графическое изображение временного ряда. Но при этом велико влияние субъективного фактора, даже при отображении выровненных уровней.

Наиболее надежные методы выбора уравнения тренда основаны на свойствах различных кривых, применяемых при аналитическом выравнивании. Такой подход позволяет увязать тип тренда с теми или иными качественными свойствами развития явления. Нам представляется, что в большинстве случаев практически приемлемым является метод, который основывается на сравнении характеристик изменения приростов исследуемого динамического ряда с соответствующими характеристиками кривых роста. Для выравнивания выбирается та кривая, закон изменения прироста которой наиболее близок к закономерности изменения фактических данных.

При выборе формы кривой надо иметь в виду еще одно обстоятельство. Рост сложности кривой в целом ряде случаев может действительно увеличить точность описания тренда в прошлом, однако в связи с тем, что более сложные кривые содержат большее число параметров и более высокие степени независимой переменной, их доверительные интервалы будут, в общем, существенно шире, чем у более простых кривых при одном и том же периоде упреждения.

В настоящее время, когда использование специальных программ без особых усилий позволяет одновременно строить несколько видов уравнений, широко эксплуатируются формальные статистические критерии для определения лучшего уравнения тренда.

Из сказанного выше, по-видимому, можно сделать вывод о том, что выбор формы кривой для выравнивания представляет собой задачу, которая не решается однозначно, а сводится к получению ряда альтернатив. Окончательный выбор не может лежать в области формального анализа, тем более, если предполагается с помощью выравнивания не только статистически описать закономерность поведения уровня в прошлом, но и экстраполировать найденную закономерность в будущее. Вместе с тем различные статистические приемы обработки данных наблюдения могут принести существенную пользу, по крайней мере, с их помощью можно отвергнуть заведомо непригодные варианты и тем самым существенно ограничить поле выбора.

Рассмотрим наиболее используемые типы уравнений тренда:

1. Линейная форма тренда:

где – уровень ряда, полученный в результате выравнивания по прямой; – начальный уровень тренда; – средний абсолютный прирост, константа тренда.

Для линейной формы тренда характерно равенство так называемых первых разностей (абсолютных приростов) и нулевые вторые разности, т. е. ускорения.

2. Параболическая (полином 2-ой степени) форма тренда:

(3.6)

Для данного типа кривой постоянными являются вторые разности (ускорение), а нулевыми – третьи разности.

Параболическая форма тренда соответствует ускоренному или замедленному изменению уровней ряда с постоянным ускорением. Если < 0 и > 0, то квадратическая парабола имеет максимум, если > 0 и < 0 – минимум. Для отыскания экстремума первую производную параболы по t приравнивают 0 и решают уравнение относительно t .

3. Логарифмическая форма тренда:

, (3.7)

где – константа тренда.

Логарифмическим трендом может быть описана тенденция, проявляющаяся в замедлении роста уровней ряда динамики при отсутствии предельно возможного значения. При достаточно большом t логарифмическая кривая становится мало отличимой от прямой линии.

4. Мультипликативная (степенная) форма тренда:

(3.8)

5. Полином 3-ей степени:

Естественно, кривых, описывающих основные тенденции, гораздо больше. Однако формат учебного пособия не позволяет описать все их многообразие. Показанные далее приемы построения моделей позволят пользователю самостоятельно использовать другие функции, в частности обратные.

Для решения поставленной задачи по аналитическому сглаживанию динамических рядов в системе STATISTICA нам потребуется создать дополнительную переменную на листе с исходными данными переменной «ВГ2001-2010», который следует сделать активным.

Нам предстоит построить уравнение тренда, которое по существу является уравнением регрессии, в котором в качестве фактора выступает «время». Создаем переменную «Т», содержащую интервалы времени, 10 годам (с 2001 по 2010). Переменная «Т» будет состоять из натуральных чисел от 1 до 10, соответствующих указанным годам.

В итоге получается следующий рабочий лист (рис. 3.6)

Рис. 3.6. Рабочий лист с созданной переменной времени

Далее рассмотрим процедуру, позволяющую строить регрессионные модели как линейного, так и нелинейного типа. Для этого выбираем: Statistics/Advanced Linear/Nonlinear Models/Nonlinear Estimation (рис. 3.7). В появившемся окне (рис. 3.8) выбираем функцию User-specified Regression, Least Squares (построение моделей регрессии пользователем вручную, параметры уравнения находятся по методу наименьших квадратов (МНК)).

В следующем диалоговом окне (рис. 3.9) нажимаем на кнопку Function to be estimated , чтобы попасть на экран для задания модели вручную (рис. 3.10).

Рис. 3.7. Запуск процедуры Statistics/Advanced Linear/

Nonlinear Models/Nonlinear Estimation

Рис. 3.8. Окно процедуры Nonlinear Estimation

Рис. 3.9ю Окно процедуры User-Specified Regression, Least Squares

Рис. 3.10. Окно для реализации процедуры

задания уравнения тренда вручную

В верхней части экрана находится поле для ввода функции, в нижней части располагаются примеры ввода функций для различных ситуаций.

Прежде чем сформировать интересующие нас модели, необходимо пояснить некоторые условные обозначения. Переменные уравнений задаются в формате «v №», где «v » обозначает переменную (от англ. «variable »), а «№» – номер столбца, в котором она расположена в таблице на рабочем листе с исходными данными. Если переменных очень много, то справа находится кнопка Review vars , позволяющая выбирать их из списка по названиям и просматривать их параметры с помощью кнопки Zoom (рис. 3.11).

Рис. 3.11. Окно выбора переменной с помощью кнопки Review vars

Параметры уравнений обозначаются любыми латинскими буквами, не обозначающими какое-либо математическое действие. Для упрощения работы предлагается обозначать параметры уравнения так, как в описании уравнений тренда – латинской буквой «а », последовательно присваивая им порядковые номера. Знаки математических действий (вычитания, сложения, умножения и пр.) задаются в обычном для Windows -приложений формате. Пробелы между элементами уравнения не требуются.

Итак, рассмотрим первую модель тренда – линейную, .

Следовательно, после набора она будет выглядеть следующим образом:

,

где v 1 – это столбец на листе с исходными данными, в котором находятся значения исходного динамического ряда; а 0 и а 1 – параметры уравнения; v 2 – столбец на листе с исходными данными, в котором находятся значения интервалов времени (переменная Т) (рис. 3.12).

После этого дважды нажимаем кнопку ОК .

Рис. 3.12. Окно процедуры задания уравнения линейного тренда

Рис. 3.13. Закладка Quick процедуры оценки уравнения тренда.

В появившемся окне (рис. 3.13) можно выбрать метод оценки параметров уравнения регрессии (Estimation method ), если это необходимо. В нашем случае нужно перейти к закладке Advanced и нажать на кнопку Start values (рис. 3.14). В этом диалоге задаются стартовые значения параметров уравнения для их нахождения по МНК, т.е. их минимальные значения. Изначально они заданы как 0,1 для всех параметров. В нашем случае можно оставить эти значения в том же виде, но если значения в наших исходных данных меньше единицы, то необходимо задать их в виде 0,001 для всех параметров уравнения тренда (рис. 3.15). Далее нажимаем кнопку ОК .

Рис. 3.14. Закладка Advanced процедуры оценки уравнения тренда

Рис. 3.15. Окно задания стартовыхзначений параметров уравнения тренда

Рис. 3.16. Закладка Quick окна результатов регрессионного анализа

На закладке Quick (рис.3.16) очень важным является значение строчки Proportion of variance accounted for , которое соответствует коэффициенту детерминации; это значение лучше записать отдельно, так как в дальнейшем оно выводиться не будет, и пользователю придется рассчитывать коэффициент вручную, при этом достаточно трех знаков после запятой. Далее нажимаем кнопку Summary: Parameter estimates для получения данных о параметрах линейного уравнения тренда (рис. 3.17).

Рис. 3.17. Результаты расчета параметров линейной модели тренда

Столбец Estimate – числовые значения параметров уравнения; Standard еrror – стандартная ошибка параметра; t-value – расчетное значение t -критерия; df – число степеней свободы (n -2); p-level – расчетный уровень значимости; Lo. Conf. Limit и Up. Conf. Limit – соответственно нижняя и верхняя граница доверительных интервалов для параметров уравнения с установленной вероятностью (указана как Level of Confidence в верхнем поле таблицы).

Соответственно уравнение линейно модели тренда имеет вид .

После этого возвращаемся к анализу и нажимаем на кнопку Analysis of Variance (дисперсионный анализ) на той же закладке Quick (см. рис. 3.16).

Рис. 3.18. Результаты дисперсионного анализа линейной модели тренда

В верхней заголовочной строке таблицы выдаются пять оценок:

Sum of Squares – сумма квадратов отклонений; df – число степеней свободы; Mean Squares – средний квадрат; F-value – критерий Фишера; p-value – расчетный уровень значимости F -критерия.

В левом столбце указывается источник вариации:

Regression – вариация, объясненная уравнением тренда; Residual – вариация остатков – отклонений фактических значений от выровненных (полученных по уравнению тренда); Total – общая вариация переменной.

На пересечении столбцов и строк получаем однозначно определенные показатели, расчетные формулы для которых представлены в табл. 3.2,

Таблица 3.2

Расчет показателей вариации трендовых моделей

Source df Sum of Squares Mean squares F-value
Regression m
Residual n-m
Total n
Corrected Total n-1
Regresion vs. Corrected Total m SSR MSR

где – выровненные значения уровней динамического ряда; – фактические значения уровней динамического ряда; – среднее значение уровней динамического ряда.

SSR (Regression Sum of Squares) – сумма квадратов прогнозных значений; SSE (Residual Sum of Squares) – сумма квадратов отклонений теоретических и фактических значений (для расчета остаточной, необъясненной дисперсии); SST (TotalSum of Squares) – сумма первой и второй строчки (сумма квадратов фактических значений); SSCT (Corrected TotalSum of Squares) – сумма квадратов отклонений фактических значений от средней величины (для расчета общей дисперсии); Regression vs. Corrected Total Sum of Squares – повторение первой строчки; MSR (Regression Mean Squares) – объясненная дисперсия; MSE (Residual Mean Squares) – остаточная, необъясненная дисперсия; MSCT (Mean Squares Corrected Total) – скорректированная общая дисперсия; Regression vs. Corrected Total Mean Squares – повторение первой строчки; Regression F-value – расчетное значение F -критерия; Regression vs. Corrected Total F-value – скорректированное расчетное значение F -критерия; n – число уровней ряда; m – число параметров уравнения тренда.

Далее опять же на закладке Quick (см. рис. 3.16) нажимаем кнопку Predicted values, Residuals, etc . После ее нажатия система строит таблицу, состоящую из трех столбцов (рис. 3.19).

Observed – наблюдаемые значения (то есть уровни исходного динамического ряда);

а) Методы выделения тренда. Анализ значимости тренда. Выделение остатков и их анализ.

Одним из важнейших понятий технического анализа является понятие тренда. Слово тренд - калька с английского trend (тенденция). Однако точного определения тренда в техническом анализе не дается. И это не случайно. Дело в том, что тренд или тенденция временного ряда - это несколько условное понятие. Под трендом понимают закономерную, неслучайную составляющую временного ряда (обычно монотонную, т.е. либо возрастающую, либо убывающую), которая может быть вычислена по вполне определенному однозначному правилу. Тренд реального временного ряда часто связан с действием природных (например, физических) законов или каких-либо других объективных закономерностей. Однако, вообще говоря, нельзя однозначно разделить случайный процесс или временной ряд на регулярную часть (тренд) и колебательную часть (остаток). Поэтому обычно предполагают, что тренд - это некоторая функция или кривая достаточно простого вида (линейная, квадратичная и т.п.), описывающая «среднее поведение» ряда или процесса. Если оказывается, что выделение такого тренда упрощает исследование, то предположение о выбранной форме тренда считается допустимым. B техническом анализе обычно предполагается, что тренд линеен (и его график - прямая линия) или кусочно линеен (и тогда его график - ломаная линия).

Предположим, что реализация временного ряда в моменты времени Т=t1, t2,...tN принимает значения X=x1,х2,...xN. Линейный тренд имеет уравнение x=at+b. Известны специальные методы нахождения коэффициентов а и b этого уравнения. В том техническом анализе, который описывается в большинстве книг, тренд находится некоторыми графическими или несложными приближенными приемами. Однако в современной практике широко используются компьютеры, которые за считанные секунды могут по заданному массиву данных выписать точное уравнения тренда заданного вида (в частности, линейного тренда).

Для временного ряда общее уравнение линейного тренда имеет вид:

Величина МТ - среднее значение моментов времени t1, t2,...tN. Выбирая подходящую единицу времени, мы всегда можем считать, что t1, t2... - это просто натуральные числа 1,2.... Например, так будет для ценового ряда, в котором цены на акции фиксируется ежедневно на момент начала торгов, если за единицу времени взять один день. В таком случае:

Величины от и о называются средними квадратичными отклонениями, они характеризуют разброс значений вокруг средних значений МТ и MX величин Т и X соответственно. Вычисление о вручную довольно утомительно, особенно для больших массивов данных. Однако все компьютерные программы, ориентированные на финансовые приложения, и даже такие универсальные программы, как Excel (не говоря уж о специальных статистических пакетах, таких как SPSS, Statistica, Statgraphics и др.) дают возможность мгновенно вычислить о для любого массива данных, который введен в память компьютера (и записан в некоторой определенной форме). Что касается величины от, то для случая ряда натуральных чисел она равна:

Величина г играет в формуле тренда ключевую роль. Она называется коэффициентом корреляции (другое название: нормированный коэффициент корреляции) и характеризует степень взаимосвязи переменных Х и Т. Коэффициент корреляции принимает значения в промежутке от - 1 до +1. Если он близок к нулю, то это значит, что нет возможности выделить значимый линейный тренд. Если он положителен, то есть тенденция роста изучаемого индекса, причем, чем ближе г к единице, тем эта тенденция становится все более определенной. При отрицательном г имеем тенденцию к убыванию.

Вычисление г весьма громоздко, но современный компьютер делает это практически мгновенно.

При r>0 говорят о положительном тренде (с течением времени значения временного ряда имеет тенденцию возрастать), при r

Знаете ли Вы, что: самые успешные в Рунете управляющие ПАММ-счетами осуществляют свою деятельность через компанию Альпари: рейтинг ПАММ-счетов ; рейтинг готовых портфелей ПАММ-счетов .

После вычисления линейного тренда нужно выяснить, насколько он значим. Это делается с помощью анализа коэффициента корреляции. Дело в том, что отличие коэффициента корреляции от нуля и тем самым наличие тренда (положительного или отрицательного) может оказаться случайным, связанным со спецификой рассматриваемого отрезка временного ряда. Иначе говоря, при анализе другого набора экспериментальных данных (для того же временного ряда) может оказаться, что полученная при этом оценка величины г намного ближе к нулю, чем исходная (и, возможно, даже имеет другой знак), и говорить о реальном, выраженном тренде тут уже становится трудно.

Для проверки значимости тренда в математической статистике разработаны специальные методики. Одна из них основана на проверке равенства г = 0 с помощью распределения Стьюдента (Стьюдент - это псевдоним английского статистика У.Госсета).

Предположим, что имеется набор экспериментальных данных - значения х1, х2,...xN временного ряда в равноотстоящие моменты времени t1, t2...tN. С помощью специальных программ (см. выше) по этим данным можно вычислить приближение г* к точному значению г коэффициента корреляции (это приближение называют оценкой). Назовем это значение г* экспериментальным. Общая идея метода статистической проверки гипотез такова. Выдвигается некоторая гипотеза, в нашем случае это гипотеза о равенстве нулю коэффициента корреляции. Далее, задается некоторый уровень вероятности а. Смысл этой величины заключается в том, что она является вероятностной мерой допустимой ошибки. А именно, мы допускаем, что сделанный нами вывод о справедливости или несправедливости гипотезы на основании заданного массива экспериментальных данных может оказаться ошибочным, ибо абсолютно точного вывода на основании лишь частичной информации ожидать, конечно, не стоит. Однако мы можем потребовать, чтобы вероятность этой ошибки не превосходила некоторой заранее выбранной величины а (уровня вероятности). Обычно берут ее значение равным 0.05 (т.е. 5%) или 0.10, иногда прут и 0.01. Событие, вероятность которого меньше, чем а, считается настолько редким, что мы берем на себя смелость им пренебрегать. Для временных рядов разной природы эту величину выбирают по-разному. Если речь идет о ряде цен на акции какой-то небольшой фирмы, то риск ошибиться не несет катастрофических последствий (для независимых от этой фирмы участников торгов) и потому а можно взять не очень маленьким. Если же речь идет о крупной сделке, то последствия ошибки могут быть очень тяжелыми и значение а берут поменьше.

Можно доказать, что при достаточно больших значениях N эта величина Uэкс (тоже являющаяся случайной) очень похожа на одну из стандартных случайных величин, используемых в математической статистике или, как говорят в математической статистике, близка к распределению Стьюдента с числом степеней свободы k (так называется параметр, задающий распределение Стьюдента), равным N-2, где N-число экспериментальных данных.

Для распределения Стьюдента имеются подробные таблицы, в которых для заданного уровня вероятности а и числа степеней свободы k указывается критическое значение Икр. Критическим или граничным оно называется потому, что ограничивает двустороннюю (учитывающую и положительные и отрицательные значения) область, вне которой значения случайной величины могут оказаться достаточно редко, с вероятностью не большей, чем а. Точнее, при условии г = 0 имеет место равенство:

В настоящее время значение Uкр можно находить не только из таблиц (где оно приводится только лишь для некоторых отдельных значений уровня вероятности - см. Табл. 2 ниже). Любая современная статистическая программа для компьютера дает возможность мгновенно вычислить Uкр для произвольного заданного уровня вероятности. Как нетрудно понять, с ростом величины а значения Uкр тоже растут.

Далее рассуждают следующим образом. Предположим, что число N достаточно велико. Тогда случайная величина 0зкс распределена приблизительно по закону Стьюдента. Если г = 0, то с большой (т.е. близкой к 1) вероятностью, равной 1 - а, значение Uэкс должно по модулю не превосходить Uкр, т.е. лежать между - кр и Uкр. А вот выходить за пределы отрезка [-Uкр, Uкр] величина Uзкс может только с вероятностью а (которую мы согласились считать малой). Поэтому если I Uзкс I > Uкр, то делают заключение о том, что гипотеза г = 0 экспериментальными данными не подтверждается, т.е. г значимо отличен от нуля и потому тренд является выраженным. Вероятность ошибки такого заключения не превосходит заданного уровня вероятности а. Если же | Uзкс | Например, пусть г*= 0.20 и N= 20. Тогда вычисление дает Uэкс = 0.87. Для уровня вероятности 5% находим из таблицы распределения Стьюдента Uкр = 2.10. Сравнивая Uэкс и Uкр, видим, что тут гипотезу о равенстве нулю коэффициента корреляции отвергать нет основания. Тренд здесь не является выраженным.

Если в результате исследования выяснилось, что тренд является выраженным, то только тогда можно этот тренд использовать для прогнозирования временного ряда. Вычислив коэффициенты а и b уравнения линейного тренда, указанные выше, получаем линейную зависимость, которая на некотором промежутке времени приблизительно описывает тенденцию динамики временного ряда. Графиком является прямая линия, продолжив которую в будущее, мы можем делать предположения о том, каковы будут значения временного ряда в будущем. Однако тенденции имеют свойства меняться, поэтому в какой-то момент времени в поведении временного ряда наступает перелом, после которого старое уравнение тренда уже не может описывать адекватно временной ряд. Сложность заключается в том, что уловить этот переломный момент очень непросто. Исследование линейного тренда ничего не говорит о наличии в будущем точек поворота, так что при их поиске приходится использовать совсем другие методы. О некоторых из них будет сказано ниже.

Кроме линейного тренда, приходится рассматривать и тренды более сложной структуры. В техническом анализе в таких случаях говорят о замедлении или ускорении линейного тренда, как бы признавая, что он утратил свою линейность. При этом заранее указать ту функцию, с помощью которой можно описать этот тренд, обычно не представляется реальным. Поэтому часто на практике просто перебирают несколько простых функциональных зависимостей (которые могут содержать несколько параметров) и для каждой из них оценивают, насколько успешно функцией того или иного вида можно описать тенденцию рассматриваемого временного ряда. При наличии компьютера эти вычисления не занимают много времени, а иногда могут проводиться даже в автоматическом режиме, выделяющем среди нескольких заданных видов трендов оптимальный. Однако далеко не всегда среди рассмотренных функций есть та, которая действительно достаточно эффективно описывает тенденцию развития заданного временного ряда. В этом случае приходится идти другими путями. Так, часто в подобной ситуации производят различные преобразования членов временного ряда (логарифмирование, «дифференцирование» - образование разностей соседних членов ряда, «интегрирование» - суммирование последовательных членов ряда и др.) для того, чтобы попытаться получить временной ряд с ясно выраженным линейным трендом. Если это удается, то к полученному ряду применяют методы вычисления тренда, описанные выше, а потом обратным преобразованием возвращаются к исходному ряду.

б) Методы выявления скрытых зависимостей. Корреляционный анализ временных рядов. Спектральный анализ и его применения.

После того, как выявлен тренд, остается задача описать те колебания, которые временной ряд совершает вокруг этого тренда. Ведь ясно, что тренд - это просто тенденция, на ней основывать прогнозы рискованно, так как в разные промежутки времени реальная ситуация может отклоняться, причем весьма значительно, от тренда в ту или иную сторону. При этом отклонение в одну сторону может принести прибыль, а в другую - убытки. В техническом анализе в этом случае говорят об осцилляторах. Методика анализа осцилляторов до самого недавнего времени находилась на очень низком, практически на доматематическом уровне. Только в последние годы с приходом вычислительной техники и специалистов, имеющих хорошее математическое образование (они до сих пор реализовывали его в оборонной промышленности, которая во всем мире сейчас находится в упадке) при анализе осцилляторов стали использоваться достаточно современные методы (основанные на гармоническом и спектральном анализе).

Колебания вокруг тренда разделяют на регулярные (являющиеся комбинацией нескольких синусоидальных или близких к ним колебаний, имеющих разные частоты) и случайные. Для выделения регулярных колебаний (их еще иногда называют скрытыми закономерностями) в математике по "заказам" большого числа прикладных наук разработано множество разных методов. Даже просто перечислить их нет никакой возможности. Однако все эти методы принадлежат обычно к одной из двух больших групп.

В первой группе - методы, своим происхождением обязанные математической статистике, а точнее - теории корреляции. Теория корреляции изучает связи между случайными величинами, а также связи между отдельными значениями временных рядов, разделенных определенным промежутком времени (лагом). Если оказывается, например, что имеется тесная связь между значениями временного ряда, разделенными промежутком времени в 12 единиц, то это можно рассматривать как указание на то, что мы обнаружили колебательную компоненту (не обязательно точно синусоидальную) с периодом в 12 единиц времени. Практически такой анализ производят с помощью специальных программ, которые производят вычисление кореллограммы - оценки для функции корреляции (которая описывает корреляцию между значениями временного ряда, взятыми через всевозможные интервалы времени - лаги).

Вторая группа методов пришла из техники - там при анализе сигналов давно и с успехом используется спектральный анализ. С помощью специальных методов (разложения в тригонометрические ряды и интегралы Фурье) производится выделение наиболее значимых гармоник, которые и дают регулярную часть колебаний вокруг тренда. Здесь вычисления еще более громоздкие, чем в корреляционном анализе. однако ныне об этих сложностях можно совершенно забыть (компьютер производит все необходимые расчеты за несколько секунд). Поэтому настало время учиться анализировать те данные, которые предоставляет спектральный анализ и строить на основании этих данных прогнозы. Эти методы довольно чувствительны к погрешностям в задании исходных данных и потому иногда приводят к заключениям о наличии закономерностей в изучаемом процессе, которых на самом деле нет.

в) Стохастическое прогнозирование (модели ARIMA).

Стохастическое прогнозирование - построение прогнозов на основе разного рода стохастических моделей. Стохастическим модели - это такие модели, которые сконструированы с помощью понятий и методов теории случайных процессов. В частности, среди этих моделей имеются те, в которых будущие значения вычисляются с помощью формул, выражающих эти значения через несколько предыдущих (т.е. соответствующих предшествующим моментам времени) значений. Такого рода модели называют авторегрессионными. Есть модели и другого рода - в них процесс моделируется комбинацией нескольких абсолютно случайных процессов (называемых белым шумом). Эти модели называют моделями скользящего среднего. Понятие скользящего среднего в техническом анализе является одним из основных инструментов, Огромное число прогностических методик основано на различных комбинациях скользящих средних разных порядков" (соответствующих разным временным отрезкам - 7, 14 дней и др.). В инженерной практике сходный метод называется фи-" льтрацией сигнала. Наиболее эффективные модели используют оба указанных метода. Одна из самых распространенных. комбинированных моделей такого рода - это ARIMA. По-русски это звучит, как АРПСС и расшифровывается как Авто-Регрессия и Проинтегрированное Скользящее Среднее. Мы не будем здесь входить в подробности построения этих моделей - они достаточно сложны. Для тех, кто хочет всерьез ознакомиться с этим, самым эффективным классом стохастических моделей, рекомендуем обратиться к книге "Статистический анализ данных на компьютере" . Непосредственные вычисления в ARIAL производятся только с применением компьютера, так как они очень громоздки. Метод ARIMA является наиболее распространенным общим методом стохастического моделирования во многих областях, в том числе и при серьезном подходе к анализу данных и прогнозированию финансовой деятельности. После построения стохастической модели ее можно использовать для прогнозирования. Однако следует отметить, что прогноз в этой (как и во всех других математических моделях) выдается с указанными границами, в пределах которых возможна ошибка.

На приведенной диаграмме (она построена с помощью программы Statgraphics) указан прогноз, получаемый с помощью стохастической модели. Он состоит из основной линии и двух граничных, между которыми с заданной степенью уверенности (называемой доверительной вероятностью, она обычно равна 95%) будут находиться члены исследуемого временного ряда (например, ряда цен) в ближайшем будущем.

г) Использование чисел Фибоначчи. Методы Ганна.

Использование чисел Фибоначчи в техническом анализе имеет довольно давнюю историю. Сами зти числа были введены математиком Леонардо Пизанским (его называли Фибоначчи, - т.е. сын Боначчо, а Боначчо - добродушный - было прозвищем его отца) в его "Книге абака" в 1228 году, где он их использовал для вычисления роста потомства у Кроликов. На самом деле этот ряд чисел был известен еще в древнем Египте. В книге Фибоначчи приведены первые 14 чисел этого бесконечного ряда чисел.

Каждое число в этой последовательности равно сумме двух предыдущих. Первыми двумя числами берутся 1 и 1, а се последующие однозначно определяются с помощью указанного выше правила. Числа Фибоначчи особенно хорошо известны в развлекательной части математики, а также в некоторых разделах современной математики (издается даже международный математический журнал Fibonacci Quarterly, посвященный числам Фибоначчи и их применениям). Можно доказать, что отношение каждого числа Фибоначчи к последующему с ростом порядкового номера этого числа стремится к числу 0.618... - к знаменитому числу золотого сечения. Это число пользовалось огромной популярностью еще в средние века, а сейчас ему придается чуть ли не фундаментальное значение во многих областях искусства и науки. Однако очень часто на самом деле оказывается, что важную роль играет не само это число, а близкое к нему число 2/3 = 0.666666... Число 2/3 действительно фундаментально, оно символизирует троичное деление, а вот число золотого сечения часто используется просто "для красоты".

В техническом анализе есть несколько методов, которые связаны с использованием числа золотого сечения и нескольких производных от него чисел. Прежде всего можно отметить, что продолжительности отдельных элементов (волн) в волновой теории Р.Эллиотта (о которой будет рассказано ниже) связываются между собой именно с помощью этого числа. Кстати, само разделение цикла на 8=5+3 этапов в волновой теории указывает на числа Фибоначчи 3,5,8.

В техническом анализе для делений (вертикальными и наклонными прямыми) чарта используют число 0.618... и производные от него числа (например (0.61 8...] = 1-0.61 8...= 0382...). Например, строится сетка, соотношение сторон которой равно числу золотого сечения или отношению чисел Фибоначчи (что, как мы уже знаем, примерно одно и то же). Относительно этой сетки и изучаются отдельные элементы чарта (линии сопротивления и поддержки, точки поворота и другие характерные точки). Вертикальные линии этой сетки задают периоды Фибоначчи (причем в литературе рекомендуется игнорировать первые две-три линии этого разбиения). Можно также строить отдельные наклонные линии, тоже задаваемые числами Фибоначчи. Эти линии проводятся от ключевых точек графика (например, от точек поворота). Считается, что линии Фибоначчи сохраняют свое действие некоторое время и после изменения тренда, что позволяет использовать эти линии для прогнозирования. Однако во всех этих случаях можно просто использовать число 2/3 и получить ничуть не худшие результаты (хотя, может быть и не столь эффектно оформленные, как при использовании золотого сечения). С помощью таких делений иногда удается весьма эффективно описать движения цен. Однако при резком развороте рынка приходится заново перерисовывать все линии Фибоначчи.

Подробную систему графического анализа чартов разработал Уильям Ганн (1878-1955), который одним из первых стал использовать в техническом анализе геометрические методы. Он строил наклонные линии (линии Ганна), задаваемые числами 1/8, 1/4, 1/3, 3/8, 1/2, 5/8, 2/3, 3/4, 7/8, и использовал их, в частности, для нахождения линий сопротивления и поддержки - фундаментальных линий в графическом техническом анализе. При приближении к этим линиям Ценовой ряд прекращает рост (для линии сопротивления) или падение (для линий поддержки) или, по крайней мере, сильно замедляет их. При некотором желании среди этих чисел можно найти такие, которые приближенно выражаются через число золотого сечения и на этом основании сделать вывод, что это замечательное число и здесь играет основную роль. Однако идея Ганна была намного проще - он просто выписал последовательность тех чисел в отрезке , которые задаются достаточно простыми дробями.

Ганн строил лучи, исходящие их характерных точек чарта (обычно из точек поворота), чтобы получать линии сопротивления и поддержки. Самое трудное здесь - правильно выбрать исходную точку линий Ганна. Можно комбинировать сетку Фибоначчи и линии Ганна. Эти методы реализованы во многих программах технического анализа (таких, как, например, MetaStock).

ПРИМЕР . Статистическое изучение динамики численности населения.

    С помощью цепных, базисных, средних показателей динамики оцените изменение численности, запишите выводы.

    С помощью метода аналитического выравнивания (по прямой и параболе, определив коэффициенты с помощью МНК) выявите основную тенденцию в развитии явления (численность населения Республики Коми). Оцените качество полученных моделей с помощью ошибок и коэффициентов аппроксимации.

    Определите коэффициенты линейного и параболического трендов с помощью средств «Мастера диаграмм». Дайте точечный и интервальный прогнозы численности на 2010 г. Запишите выводы.

Метод аналитического выравнивания а) Линейное уравнение тренда имеет вид y = bt + a 1. Находим параметры уравнения методом наименьших квадратов . Используем способ отсчета времени от условного начала. Система уравнений МНК для линейного тренда имеет вид: a 0 n + a 1 ∑t = ∑y a 0 ∑t + a 1 ∑t 2 = ∑y t

Для наших данных система уравнений примет вид: 10a 0 + 0a 1 = 10400 0a 0 + 330a 1 = -4038 Из первого уравнения выражаем а 0 и подставим во второе уравнение Получаем a 0 = -12.236, a 1 = 1040 Уравнение тренда: y = -12.236 t + 1040

Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации. Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения тренда к исходным данным.

б) выравнивание по параболе Уравнение тренда имеет вид y = at 2 + bt + c 1. Находим параметры уравнения методом наименьших квадратов. Система уравнений МНК: a 0 n + a 1 ∑t + a 2 ∑t 2 = ∑y a 0 ∑t + a 1 ∑t 2 + a 2 ∑t 3 = ∑yt a 0 ∑t 2 + a 1 ∑t 3 + a 2 ∑t 4 = ∑yt 2

Для наших данных система уравнений имеет вид 10a 0 + 0a 1 + 330a 2 = 10400 0a 0 + 330a 1 + 0a 2 = -4038 330a 0 + 0a 1 + 19338a 2 = 353824 Получаем a 0 = 1.258, a 1 = -12.236, a 2 = 998.5 Уравнение тренда: y = 1.258t 2 -12.236t+998.5

Ошибка аппроксимации для параболического уравнения тренда. Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве тренда.

Минимальная ошибка аппроксимации при выравнивании по параболе. К тому же коэффициент детерминации R 2 выше чем при линейной. Следовательно, для прогнозирования необходимо использовать уравнение по параболе.

Интервальный прогноз. Определим среднеквадратическую ошибку прогнозируемого показателя. m = 1 - количество влияющих факторов в уравнении тренда. Uy = y n+L ± K где L - период упреждения; у n+L - точечный прогноз по модели на (n + L)-й момент времени; n - количество наблюдений во временном ряду; Sy - стандартная ошибка прогнозируемого показателя; T табл - табличное значение критерия Стьюдента для уровня значимости α и для числа степеней свободы, равного n-2 . По таблице Стьюдента находим Tтабл T табл (n-m-1;α/2) = (8;0.025) = 2.306 Точечный прогноз, t = 10: y(10) = 1.26*10 2 -12.24*10 + 998.5 = 1001.89 тыс. чел. 1001.89 - 71.13 = 930.76 ; 1001.89 + 71.13 = 1073.02 Интервальный прогноз: t = 9+1 = 10: (930.76;1073.02)

Ряда. Уравнение тренда.

Кривые роста, описывающие закономерности развития явлений во времени, - это результат аналитического выравнивания динамических рядов. Выравнивание ряда с помощью тех или иных функций (т. е. их подгонка к данным) в большинстве случаев оказывается удобным средством описания эмпирических данных. Это средство при соблюдении ряда условий можно применить и для прогнозирования. Процесс выравнивания состоит из следующих основных этапов:

Выбора типа кривой, форма которой соответствует характеру изменения динамического ряда;

Определения численных значений (оценивание) параметров кривой;

Апостериорного контроля качества выбранного тренда.

В современных ППП все перечисленные этапы реализуются одновременно, как правило, в рамках одной процедуры.

Аналитическое сглаживание с использованием той или иной функции позволяет получить выравненные, или, как их иногда не вполне правомерно называют, теоретические значения уровней динамического ряда, т. е. те уровни, которые наблюдались бы, если бы динамика явления полностью совпадала с кривой. Эта же функция с некоторой корректировкой или без нее, применяется в качестве модели для экстраполяции (прогноза).

Вопрос о выборе типа кривой является основным при выравнивании ряда. При всех прочих равных условиях ошибка в решении этого вопроса оказывается более значимой по своим последствиям (особенно для прогнозирования), чем ошибка, связанная со статистическим оцениванием параметров.

Поскольку форма тренда объективно существует, то при выявлении ее следует исходить из материальной природы изучаемого явления, исследуя внутренние причины его развития, а также внешние условия и факторы на него влияющие. Только после глубокого содержательного анализа можно переходить к использованию специальных приемов, разработанных статистикой.

Весьма распространенным приемом выявления формы тренда является графическое изображение временного ряда. Но при этом велико влияние субъективного фактора, даже при отображении выровненных уровней.

Наиболее надежные методы выбора уравнения тренда основаны на свойствах различных кривых, применяемых при аналитическом выравнивании. Такой подход позволяет увязать тип тренда с теми или иными качественными свойствами развития явления. Нам представляется, что в большинстве случаев практически приемлемым является метод, который основывается на сравнении характеристик изменения приростов исследуемого динамического ряда с соответствующими характеристиками кривых роста. Для выравнивания выбирается та кривая, закон изменения прироста которой наиболее близок к закономерности изменения фактических данных.

В табл. 4 приводится перечень наиболее употребительных при анализе экономических рядов видов кривых и указываются соответствующие «симптомы», по которым можно определить, какой вид кривых подходит для выравнивания.

При выборе формы кривой надо иметь в виду еще одно обстоятельство. Рост сложности кривой в целом ряде случаев может действительно увеличить точность описания тренда в прошлом, однако в связи с тем, что более сложные кривые содержат большее число параметров и более высокие степени независимой переменной, их доверительные интервалы будут в общем существенно шире, чем у более простых кривых при одном и том же периоде упреждения.

Таблица 4

Характер изменения показателей, основанных
на средних приростах для различных видов кривых

Показатель Характер изменения показателей во времени Вид кривой
Примерно одинаковые Прямая
Линейно изменяются Парабола второй степени
Линейно изменяются Парабола третьей степени
Примерно одинаковые Экспонента
Линейно изменяются Логарифмическая парабола
Линейно изменяются Модифицированная экспонента
Линейно изменяются Кривая Гомперца

В настоящее время, когда использование специальных программ без особых усилий позволяет одновременно строить несколько видов уравнений, широко эксплуатируются формальные статистические критерии для определения лучшего уравнения тренда.

Из сказанного выше, по-видимому, можно сделать вывод о том, что выбор формы кривой для выравнивания представляет собой задачу, которая не решается однозначно, а сводится к получению ряда альтернатив. Окончательный выбор не может лежать в области формального анализа, тем более, если предполагается с помощью выравнивания не только статистически описать закономерность поведения уровня в прошлом, но и экстраполировать найденную закономерность в будущее. Вместе с тем различные статистические приемы обработки данных наблюдения могут принести существенную пользу, по крайней мере, с их помощью можно отвергнуть заведомо непригодные варианты и тем самым существенно ограничить поле выбора.

Рассмотрим наиболее используемые типы уравнений тренда:

1.Линейная форма тренда:

где - уровень ряда, полученный в результате выравнивания по прямой;

Начальный уровень тренда;

Средний абсолютный прирост; константа тренда.

Для линейной формы тренда характерно равенство так называемых первых разностей (абсолютных приростов) и нулевые вторые разности, т. е. ускорения.

2.Параболическая (полином 2-ой степени) форма тренда:

Для данного типа кривой постоянными являются вторые разности (ускорение), а нулевыми – третьи разности.

Параболическая форма тренда соответствует ускоренному или замедленному изменению уровней ряда с постоянным ускорением. Если < 0 и > 0, то квадратическая парабола имеет максимум, если > 0 и < 0 – минимум. Для отыскания экстремума первую производную параболы по t приравнивают 0 и решают уравнение относительно t.

3.Экспоненциальная форма тренда:

где - константа тренда; средний темп изменения уровня ряда.

При > 1 данный тренд может отражать тенденцию ускоренного и все более ускоряющегося возрастания уровней ряда. При < 1 – тенденцию постоянно, все более замедляющегося снижения уровней временного ряда.

4.Гиперболическая форма тренда (1 типа):

Данная форма тренда может отображать тенденцию процессов, ограниченных предельным значением уровня.

5.Логарифмическая форма тренда:

где - константа тренда.

Логарифмическим трендом может быть описана тенденция, проявляющаяся в замедлении роста уровней ряда динамики при отсутствии предельно возможного значения. При достаточно большом t логарифмическая кривая становится мало отличимой от прямой линии.

6.Обратнологарифмическая форма тренда:

7.Мультипликативная (степенная) форма тренда:

8.Обратная (гиперболическая 2 типа) форма тренда:

9.Гиперболическая форма тренда 3 типа:

10.Полином 3-ей степени:

Для всех нелинейных, относительно исходных переменных моделей (уравнений регрессии), а их здесь большинство, требуется провести вспомогательные преобразования, представленные в таблице ниже.

Таблица 5

Модели, сводящиеся к линейному тренду

Модель Уравнение Преобразование
Мультипликативная (Степенная)
Гиперболическая I типа
Гиперболическая II типа
Гиперболическая III типа
Логарифмическая
Обратнологариф­мическая

В формулах, перечисленных в таблице, как и во всех формулах, описывающих модель тренда, есть коэффициенты уравнений.

Однако, при практическом использовании линеаризации с помощью преобразования исследуемых переменных следует иметь ввиду, что оценки параметров, полученных линеаризацией с помощью М.Н.К. (метод наименьших квадратов), минимизируют сумму квадратов отклонений для преобразованных, а не исходных переменных. Поэтому полученные с помощью линеаризации зависимостей оценки нуждаются в уточнении.

Для решения поставленной задачи по аналитическому сглаживанию динамических рядов в системе STATISTICA нам потребуется создать несколько новых дополнительных переменных, необходимых для выполнения дальнейшей работы, а также осуществить некоторые вспомогательные операции по преобразованию нелинейных моделей тренда в линейные.

Итак, нам предстоит построить уравнение тренда, которое по существу является уравнением регрессии, в котором в качестве фактора выступает «время». Прежде всего, мы создадим переменную «Т», содержащую моменты времени четвертого периода. Так как четвертый период включает 12 лет, то переменная «Т» будет состоять из натуральных чисел от 1 до 12, соответствующих месяцам года.

Кроме того, для работы с некоторыми моделями тренда нам потребуется еще несколько переменных, содержание которых можно понять из их обозначения. Это переменные, получаемые из временного ряда: «Т^2», «Т^3», «1/Т» и «ln T». А также переменные, получаемые из исходных данных за четвертый период: «1/Import4» и «ln Import4». Также необходимо создать такую же таблицу для экспорта. Все это предлагается сделать на новом рабочем листе, скопировав туда данные за 4-й период.

Для этого воспользуемся уже известным нам меню Workbook/Insert.

В итоге получаем следующие электронные таблицы.

Рис. 38. Таблица со вспомогательными переменными для импорта

Рис. 39. Таблица со вспомогательными переменными для экспорта

Для аналитического выравнивания рядов динамики мы будем использовать модуль Multiple Regression в меню Statistics. Рассмотрим пример построения графического изображения и определение численных параметров тренда, выраженного линейной зависимостью.

Рис. 40. Модуль Multiple Regression в меню Statistics

Для выбора зависимых и независимых переменных воспользуемся кнопкой Variables.

В открывшемся окне в левом информационном поле мы выбираем зависимую переменную Y t , (в нашем случае это Import 4 – данные по четвертому периоду). Номера выбранных зависимых переменных отображаются внизу в поле Dependent var. (or list for batch). Соответственно в правом поле мы выбираем независимые переменные (в нашем случае одну – время «Т»). Номера выбранных независимых переменных высвечиваются внизу в поле Independent variable list.

После того, как завершен выбор переменных, нажимаем ОК. Система выдает окно с обобщенными результатами расчета параметров тренда (далее они будут рассмотрены более подробно) и возможностью выбора направления для последующего детального анализа. Заметим, что значение оценки, высвеченное красным цветом, указывает на статистическую значимость результатов.

Рис. 41. Закладка Advanced

На закладке располагается несколько кнопок, позволяющих получить максимально детализированные сведения по интересующему нас направлению анализа. При нажатии на нее получаем две таблицы с результатами регрессионного анализа. В первой представлены результаты расчета параметров уравнения регрессии, во второй – основные показатели уравнения.

Рис. 42. Основные показатели уравнения для данных импорта за четвертый период (линейный тренд)

Здесь N = – объем результативной переменной. В верхнем поле расположены показатели R, , Adjusted R, F, p, Std.Error of Estimate , означающие соответственно теоретическое корреляционное отношение, коэффициент детерминации, уточненный коэффициент детерминации, расчетное значение критерия Фишера (в скобках дано число степеней свободы), уровень значимости, стандартная ошибка уравнения (эти же показатели можно увидеть во второй таблице). В самой таблице нас интересуют столбец В , в котором расположены коэффициенты уравнения, столбец t и столбец p-level , обозначающие расчетное значение t-критерия и расчетный уровень значимости, необходимые для оценки значимости параметров уравнения. При этом система помогает пользователю: когда процедура предполагает проверку на значимость, STATISTICA выделяет значимые элементы красным цветом (т.е. отвергается нулевая гипотеза о равенстве параметров нулю). В нашем случае |t факт | > t табл для обоих параметров, следовательно они значимы.

Рис. 43. Параметры уравнения регрессии для данных импорта за четвертый период (линейный тренд)

Для оценки статистической значимости уравнения в целом на закладке Advanced воспользуемся кнопкой ANOVA (Goodness Of Fit), позволяющей получить таблицу дисперсионного анализа и значение F-критерия Фишера.

Рис. 44. Таблица дисперсионного анализа

Sums of Squares – сумма квадратов отклонений: на пересечении со строкой Regression – сумма квадратов отклонений теоретических (полученных по уравнению регрессии) значений признака от средней величины. Эта сумма квадратов используется для расчета факторной, объясненной дисперсии зависимой переменной. На пересечении со строкой Residual – сумма квадратов отклонений теоретических и фактических значений переменной (для расчета остаточной, необъясненной дисперсии), Total – отклонений фактических значений переменной от средней величины (для расчета общей дисперсии). Столбец df – число степеней свободы, Means Squares обозначает дисперсию: на пересечении со строкой Regression – факторную, со строкой Residual - остаточную, F – критерий Фишера, используемый для оценки общей значимости уравнения и коэффициента детерминации, p-level – уровень значимости.

Параметры уравнения тренда в STATISTICA, как и в большинстве других программ, рассчитываются по метод наименьших квадратов (МНК).

Метод позволяет получить значения параметров, при которых обеспечивается минимизация суммы квадратов отклонений фактических уровней от сглаженных, т. е. полученных в результате аналитического выравнивания.

Математический аппарат метода наименьших квадратов описан в большинстве работ по математической статистике, поэтому нет необходимости подробно на нем останавливаться. Напомним только некоторые моменты. Так, для нахождения параметров линейного тренда (2.10) необходимо решить систему уравнений:

Данная система уравнений упрощается, если значения t подобрать таким образом, чтобы их сумма равнялась нулю, т. е. начало отсчета времени перенести в середину рассматриваемого периода. Очевидно, что перенос начала координат имеет смысл только при ручной обработке динамического ряда.

Если , то , .

В общем виде систему уравнений для нахождения параметров полинома можно записать как

При сглаживании временного ряда по экспоненте (которая часто используется в экономических исследованиях) для определения параметров следует применить метод наименьших квадратов к логарифмам исходных данных.

После переноса начала отсчета времени в середину ряда получают:

следовательно:

Если наблюдаются более сложные изменения уровней временного ряда и выравнивание осуществляется по показательной функции вида , то параметры определяются в результате решения следующей системы уравнений:

В практике исследования социально-экономических явлений исключительно редко встречаются динамические ряды, характеристики которых полностью соответствуют признакам эталонных математических функций. Это обусловлено значительным числом факторов разного характера, влияющих на уровни ряда и тенденцию их изменения.

На практике чаще всего строят целый ряд функций, описывающих тренд, а затем выбирают лучшую на основе того или иного формального критерия.

Рис. 45. Закладка Residuals/Assumptions/Prediction

Здесь воспользуемся кнопкой Perform Residual Analysis, открывающую модуль анализа остатков. Под остатками (Residuals) в данном случае понимается отклонение исходных значений динамического ряда от прогнозируемых, в соответствии с выбранным уравнением тренда. Сразу же переходим к закладке Advanced.

Рис. 46. Закладка Advanced в Perform Residual Analysis

Воспользуемся кнопкой Summary: Residuals & Predicted, позволяющую получить одноименную таблицу, которая содержит исходные значения динамического ряда Observed Value, прогнозируемые значения по выбранной модели тренда Predicted Value, отклонения прогнозных значений от исходных Residual Value, а также различные специальные показатели и стандартизированные значения. Также в таблице представлены максимальное, минимальное значения, средняя и медиана по каждому столбцу.

Рис. 47. Таблица, содержащая показатели и специальные значения для линейного тренда

В данной таблицы наибольший интерес для нас представляет столбец Residual Value, значения которого в дальнейшем используются для характеристики качества подбора тренда, а также столбец Predicted Value, который содержит прогнозные значения динамического ряда в соответствии с выбранной моделью тренда (в нашем случае – линейной).

Далее построим график исходного временного ряда совместно с вычисленными в соответствии с линейным уравнением тренда прогнозными значениями для четвертого периода. Для этого лучше всего скопировать значения из столбца Predicted Value в таблицу, в которой были созданы переменные для построения трендов.

Рис. 48. Третий период динамического ряда импорта (млрд. $) и линейный тренд

Итак, мы получили все необходимые результаты расчета параметров тренда, выраженного линейной моделью, для четвертого периода исходного динамического ряда, а также построили график данного ряда, совмещенный с линией тренда. Далее будут представлены остальные модели трендов.

Следует заметить, что в результате линеаризации степенной и экспоненциальной функций STATISTICA возвращает значение линеаризованной функции равное , поэтому для дальнейшего использования их надо преобразовать с помощью следующей элементарной транзакции , в том числе и для построения графических изображений. Для гиперболических функций, а также для обратнологарифмической функции необходимо выполнить преобразование вида .

Для этого также целесообразно создать дополнительные переменные и получить их с помощью формул на основе уже имеющихся переменных.

Итак, при решении задачи с помощью процедуры Multiple Regression, необходимо в качестве переменных выбрать натуральные логарифмы исходного ряда и оси времени.

Рис. 49. Основные показатели уравнения для данных импорта за третий период (степенная модель)

Рис. 50. Параметры уравнения регрессии для данных импорта за третий период (степенная модель)

Рис. 51. Таблица дисперсионного анализа

Рис. 52. Таблица, содержащая показатели и специальные значения для степенной модели

Затем, как и в случае с линейным трендом, копируем значения из столбца Predicted Value в таблицу, но там для этого строим еще одну переменную, в которой получаем прогнозные значения по степенной функции с помощью преобразования .

Рис. 53. Создание дополнительной переменной

Рис. 54. Таблица со всеми переменными

Рис. 55. Третий период динамического ряда импорта (млрд. $) и степенная модель

Рис.56. Основные показатели уравнения для данных импорта за третий период (экспоненциальная модель)

Рис. 57. Третий период динамического ряда импорта (млрд. $) и экспоненциальная модель

Рис.58. Основные показатели уравнения для данных импорта за третий период (обратная модель)

Рис. 59. Третий период динамического ряда импорта (млрд. $) и обратная модель

Рис. 60. Основные показатели уравнения для данных импорта за третий период (полином второй степени)

Рис. 61. Третий период динамического ряда импорта (млрд. $) и полином второй степени

Рис. 62. Основные показатели уравнения для данных импорта за третий период (полином 3-й степени)

Рис. 63. Третий период динамического ряда импорт (млрд. $) и полином 3-й степени


Рис. 64. Основные показатели уравнения для данных импорта за третий период (гипербола 1-ого вида)

Рис. 65. Третий период динамического ряда импорт (млрд. $) и гипербола 1-ого вида


Рис. 66. Основные показатели уравнения для данных импорта за третий период (гипербола 3 типа)

Рис. 67. Третий период динамического ряда импорт и гипербола 3 типа


Рис. 68. Основные показатели уравнения для данных импорта за третий период (логарифмическая модель)

Рис. 69. Третий период динамического ряда импорт (млрд. $) и логарифмическая модель


Рис. 70. Основные показатели уравнения для данных импорта за третий период (обратнологарифмическая модель)

Рис. 71. Третий период динамического ряда импорт (млрд. $) и обратнологарифмическая модель


Затем построим таблицу со вспомогательными переменными для построения трендов для экспорта.

Рис. 72. Таблица со вспомогательными переменными

Проделаем те же операции что и для четвертого период импорта.

Рис. 73. Основные показатели уравнения для данных экспорта за третий период (линейная модель)

Рис. 74. Третий период динамического ряда экспорта (млрд. $) и линейная модель

Рис. 75. Основные показатели уравнения для данных экспорта за третий период (степенная модель тренда)

Рис. 76. Третий период динамического ряда экспорта и степенная модель


Рис. 77. Основные показатели уравнения для данных экспорта за третий период (экспоненциальная модель тренда)

Рис. 78. Третий период динамического ряда экспорта (млрд. $) и экспоненциальная модель


Рис. 79. Основные показатели уравнения для данных экспорта за третий период (обратная модель тренда)

Рис. 80. Третий период динамического ряда экспорта (млрд. $) и обратная модель


Рис. 81. Основные показатели уравнения для данных экспорта за третий период (полином второй степени)

Рис. 82. Третий период динамического ряда экспорта (млрд. $) и полином второй степени


Рис. 83. Основные показатели уравнения для данных экспорта за третий период (полином третей степени)

Рис. 84. Третий период динамического ряда экспорта (млрд. $) и полином третей степени


Рис. 85. Основные показатели уравнения для данных экспорта за третий период (гипербола 1-ого вида)

Рис. 86. Третий период динамического ряда экспорта и гипербола 1-ого типа


Рис. 87. Основные показатели уравнения для данных экспорта за третий период (гипербола 3-ого вида)

Рис. 88. Третий период динамического ряда экспорта (млрд. $) и гипербола 3-ого типа


Рис. 89. Основные показатели уравнения для данных экспорта за третий период (логарифмическая модель)

Рис. 90. Третий период динамического ряда экспорта (млрд. $) и логарифмическая модель


Рис. 91. Основные показатели уравнения для данных экспорта за третий период (обратнологарифмическая модель)

Рис. 91. Третий период динамического ряда экспорта (млрд. $) и обратнологарифмическая модель


Выбор наилучшего тренда

Как уже отмечалось, проблема выбора формы кривой - одна из основных проблем, с которой сталкиваются при выравнивании ряда динамики. Решение этой проблемы во многом определяет результаты экстраполяции тренда. В большинстве специализированных программ для выбора лучшего уравнения тренда предоставляется возможность воспользоваться следующими критериями:

Минимальное значение среднеквадратической ошибки тренда:

,

где - фактические уровни ряда динамики;

Уровни ряда, определенные по уравнению тренда;

n - число уровней ряда;

p - число факторовв уравнении тренда.

- минимальное значение остаточной дисперсии:

Минимальное значение средней ошибки аппроксимации;

Минимальное значение средней абсолютной ошибки;

Максимальное значение коэффициента детерминации;

Максимальное значение F- критерия Фишера:

: ,

где k – число степеней свободы факторной дисперсии,равное числу независимых переменных (признаков-факторов) в уравнении;

n-k-1 - число степеней свободы остаточной дисперсии.

Применение формального критерия для выбора формы кривой, по-видимому, даст практически пригодные результаты в том случае, если отбор будет проходить в два этапа. На первом этапе отбираются зависимости, пригодные с позиции содержательного подхода к задаче, в результате чего происходит ограничение круга потенциально приемлемых функций. На втором этапе для этих функций подсчитываются значения критерия и выбирается та из кривых, которой соответствует минимальное его значение.

В данном пособии для идентификации тренда используется формальный метод, который основывается на использовании численного критерия. В качестве такого критерия рассматривается максимальный коэффициент детерминации:

.

Расшифровка обозначений и формулы данных показателей даны в предыдущих разделах. Коэффициент детерминации показывает, какая доля общей дисперсии результативного признака обусловлена вариацией признака – фактора. В таблицах STATISTICA он обозначается как R?.

В следующей ниже таблице будут представлены уравнения моделей трендов и коэффициенты детерминации данных импорта.

Таблица 6

Уравнения моделей трендов и коэффициенты детерминации Import.

Сопоставив значения коэффициентов детерминации для различных типов кривых можно сделать вывод о том, что для исследуемого третьего периода лучшей формой тренда будет полином третей степени для импорта и для экспорта.

Далее необходимо проанализировать выбранную модель тренда с точки зрения ее адекватности реальным тенденциям исследуемого временного ряда через оценку надежности полученных уравнений трендов по F-критерию Фишера. В данном случае расчетное значение критерия Фишера для импорта равно 16,573; для экспорта – 13,098, а табличное значение при уровне значимости равно 3,07. Следовательно, эта модель тренда признается адекватно отражающей реальную тенденцию изучаемого явления.

Выбор редакции
Незнакомец, советуем тебе читать сказку "Каша из топора" самому и своим деткам, это замечательное произведение созданное нашими предками....

У пословиц и поговорок может быть большое количество значений. А раз так, то они располагают к исследованиям большим и малым. Наше -...

© Зощенко М. М., наследники, 2009© Андреев А. С., иллюстрации, 2011© ООО «Издательство АСТ», 2014* * *Смешные рассказыПоказательный...

Флавий Феодосий II Младший (тж. Малый, Юнейший; 10 апр. 401 г. - † 28 июля 450 г.) - император Восточной Римской империи (Византии) в...
В тревожный и непростой XII век Грузией правила царица Тамара . Царицей эту великую женщину называем мы, русскоговорящие жители планеты....
Житие сщмч. Петра (Зверева), архиепископа ВоронежскогоСвященномученик Петр, архиепископ Воронежский родился 18 февраля 1878 года в Москве...
АПОСТОЛ ИУДА ИСКАРИОТ Апостол Иуда ИскариотСамая трагическая и незаслуженно оскорбленная фигура из окружения Иисуса. Иуда изображён в...
Когнитивная психотерапия в варианте Бека - это структурированное обучение, эксперимент, тренировки в ментальном и поведенческом планах,...
Мир сновидений настолько многогранен, что никогда не знаешь, что же появится в следующем сне. Порой сны бывают устрашающие, приводящие к...