Температура плавления и другие свойства вольфрама. Что такое вольфрам? Что это за материал


Химия

Элемент № 74 вольфрам причисляют обычно к редким металлам: его содержание в земной коре оценивается в 0,0055%; его нет в морской воде, его не удалось обнаружить в солнечном спектре. Однако по популярности онможет поспорить со многими отнюдь не редкими металлами, а его минералы были известны задолго до открытия самого элемента. Так, еще в XVII в. во многих европейских странах знали «вольфрам» и «тунгстен» - так называли тогда наиболее распространенные минералы вольфрама - вольфрамит и шеелит. А элементарный вольфрам был открыт в последней четверти XVIII в .

Вольфрамовая руда

Очень скоро этот металл получил практическое значение - как легирующая добавка. А после Всемирной выставки 1900 г. в Париже, на которой демонстрировались образцы быстрорежущей вольфрамовой стали, элемент № 74 стали применять металлурги во всех более или менее промышленно развитых странах. Главная особенность вольфрама как легирующей добавки заключается в том, что он придает стали красностойкость - позволяет сохранить твердость и прочность при высокой температуре. Более того, большинство сталей при охлаждении на воздухе (после выдержки при температуре, близкой к температуре красного каления) теряют твердость. А вольфрамовые - нет.
Инструмент, изготовленный из вольфрамовой стали, выдерживает огромные скорости самых интенсивных процессов металлообработки. Скорость резания таким инструментом измеряется десятками метров в секунду.
Современные быстрорежущие стали содержат до 18% вольфрама (или вольфрама с молибденом), 2-7% хрома и небольшое количество кобальта. Они сохраняют твердость при 700-800° С, в то время как обычная сталь начинает размягчаться при нагреве всего до 200° С. Еще большей твердостью обладают «стеллиты» - сплавы
вольфрам а с хромом и кобальтом (без железа) и особенно карбиды вольфрама - его соединения с углеродом. Сплав «видна» (карбид вольфрама, 5-15% кобальта и небольшая примесь карбида титана) в 1,3 раза тверже обычной вольфрамовой стали и сохраняет твердость до 1000- 1100° С. Резцами из этого сплава можно снимать за минуту до 1500-2000 м железной стружки. Ими можно быстро и точно обрабатывать «капризные» материалы: бронзу и фарфор, стекло и эбонит; при этом сам инструмент изнашивается совсем незначительно.
В начале XX в. вольфрамовую нить стали применять в электрических лампочках: она позволяет доводить накал до 2200° С и обладает большой светоотдачей. И в этом качестве вольфрам совершенно незаменим до наших дней. Очевидно, поэтому электрическая лампочка названа в одной популярной песне «глазком вольфрамовым».

Минералы и руды вольфрама

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисыо вольфрама WO 3 и окислами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Наиболее распространенный минерал, вольфрамит, представляет собой твердый раствор вольфраматов (солей вольфрамовой кислоты) железа и марганца (mFeW0 4 *nMnW0 4). Этот раствор - тяжелые и твердые кристаллы коричневого или черного цвета, в зависимости от того, какое соединение преобладает в их составе. Если больше побнерита (соединения марганца), кристаллы черные, если же преобладает железосодержащий ферберит - коричневые. Вольфрамит парамагнитен и хорошо проводит электрический ток.
Из других минералов вольфрама промышленное значение имеет шеелит - вольфрамат кальция CaW04. Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит немагнитен, но он обладает другой характерной особенностью - способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.
Месторождения вольфрамовых руд теологически связаны с областями распространения гранитов . Крупнейшие зарубежные месторождения вольфрамита и шеелита находятся в Китае, Бирме, США, Боливии и Португалии. Наша страна тоже располагает значительными запасами минералов вольфрама, главные их месторождения находятся на Урале, Кавказе и в Забайкалье.
Крупные кристаллы вольфрамита или шеелита - большая редкость. Обычно вольфрамовые минералы лишь вкраплены в древние гранитные породы - средняя концентрация вольфрама в итоге оказывается в лучшем случае 1-2%. Поэтому извлечь вольфрам из руд очень трудно.


Как получают вольфрам

Первая стадия - обогащение руды, отделение ценных компонентов от основной массы - пустой породы. Методы обогащения - обычные для тяжелых руд и металлов: измельчение и флотация с последующими операциями - магнитной сепарацией (для вольфрамитиых руд) и окислительным обжигом.
Полученный концентрат чаще всего спекают с избытком соды, чтобы перевести вольфрам в растворимое соединение - вольфрамат натрия. Другой способ получения этого вещества - выщелачивание; вольфрам извлекают содовым раствором под давлением и при повышенной температуре (процесс идет в автоклаве) с последующей нейтрализацией и осаждением в виде искусственного шеелита, т. е. вольфрамата кальция. Стремление получить именно вольфрамат объясняется тем, что из него сравнительно просто, всего в две стадии:
CaW0 4 → H 2 W0 4 или (NH 4) 2 W0 4 → WO 3 , можно выделить очищенную от большей части примесей окись вольфрама.
Есть еще один способ получения окиси вольфрама - через хлориды. Вольфрамовый концентрат при повышенной температуре обрабатывают газообразным хлором. Образовавшиеся хлориды вольфрама довольно легко отделить от хлоридов других металлов методом возгонки, используя разницу температур, при которых эти вещества переходят в парообразное состояние. Полученные хлориды вольфрама можно превратить в окисел, а можно пустить непосредственно на переработку в элементарный металл.


Превращение окислов или хлоридов в металл - следующая стадия производства вольфрама. Лучший восстановитель окиси вольфрама - водород. При восстановлении водородом получается наиболее чистый металлический вольфрам. Процесс восстановления происходит в трубчатых печах, нагретых таким образом, что по мере продвижения по трубе «лодочка» с W0 3 проходит через несколько температурных зон. Навстречу ей идет поток сухого водорода. Восстановление происходит и в «холодных» (450-600° С) и в «горячих» (750-1100° С) зонах; в «холодных» - до низшего окисла W0 2 , дальше - до элементарного металла. В зависимости от температуры и длительности реакции в «горячей» зоне меняются чистота и размеры зерен выделяющегося на стенках «лодочки» порошкообразного вольфрама.
Восстановление может идти не только под действием водорода. На практике часто используется уголь. Применение твердого восстановителя несколько упрощает производство, однако в этом случае требуется более высокая температура - до 1300-1400° С. Кроме того, уголь и примеси, которые он всегда содержит, вступают в реакции с вольфрамом, образуя карбиды и другие соединения. Это приводит к загрязнению металла. Между тем электротехнике нужен весьма чистый вольфрам. Всего 0,1% железа делает вольфрам хрупким и малопригодным для изготовления тончайшей проволоки.
Получение вольфрама из хлоридов основано на процессе пиролиза. Вольфрам образует с хлором несколько соединений. С помощью избытка хлора все их можно перевести в высший хлорид - WCl 6 , который разлагается на вольфрам и хлор при 1600° С. В присутствии водорода этот процесс идет уже при 1000° С.
Так получают металлический вольфрам, но не компактный, а в виде порошка, который затем прессуют в токе водорода при высокой температуре. На первой стадии прессования (при нагреве до 1100-1300° С) образуется пористый ломкий слиток. Прессование продолжается при еще более высокой температуре, едва не достигающей под конец температуры плавления вольфрама. В этих условиях металл постепенно становится сплошным, приобретает волокнистую структуру, а с ней - пластичность и ковкость.

Главные свойства

Вольфрам отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью. Давно известно выражение: «Тяжелый, как свинец». Правильнее было бы говорить: «Тяжелый, как вольфрам». Плотность вольфрама почти вдвое больше, чем свинца, точнее - в 1,7 раза. При этом атомная масса его несколько ниже: 184 против 207.


По тугоплавкости и твердости вольфрам и его сплавы занимают высшие места среди металлов. Технически чистый вольфрам плавится при 3410° С, а кипит лишь при 6690° С. Такая температура - на поверхности Солнца!
А выглядит «король тугоплавкости» довольно заурядно. Цвет вольфрама в значительной мере зависит от способа получения. Сплавленный вольфрам - блестящий серый металл, больше всего напоминающий платину. Вольфрамовый порошок - серый, темно-серый и даже черный (чем мельче зернение, тем темнее).

Химическая активность

Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами от 180 до 186. Кроме того, в атомных реакторах в результате различных ядерных реакций образуются еще 8 радиоактивных изотопов вольфрама с массовыми числами от 176 до 188; все они сравнительно недолговечны: их периоды полураспада - от нескольких часов до нескольких месяцев.
Семьдесят четыре электрона атома вольфрама расположены вокруг ядра таким образом, что шесть из них находятся на внешних орбитах и могут быть отделены сравнительно легко. Поэтому максимальная валентность вольфрама равна шести. Однако строение этих внешних орбит особое - они состоят как бы из двух «ярусов»: четыре электрона принадлежат предпоследнему уровню -d, который оказывается, таким образом, заполненным меньше чем наполовину. (Известно, что число электронов в заполненном уровне d равно десяти.) Эти четыре электрона (очевидно, неспарепные) способны легко образовывать химическую связь. Что же касается двух «самых наружных» электронов, то их оторвать совсем легко.
Именно особенностями строения электронной оболочки объясняется высокая химическая активность вольфрама. В соединениях он бывает не только шестивалентным, но и пяти-, четырех-, трех-, двух- и нульвалентным. (Неизвестны лишь соединения одновалентного вольфрама).
Активность вольфрама проявляется в том, что он вступает в реакции с подавляющим болишинстом элементов, образуя множество простых и сложных соединений. Даже в сплавах вольфрам часто оказывается химически связанным. А с кислородом и другими окислителями он взаимодействует легче, чем большинство тяжелых металлов.
Реакция вольфрама с кислородом идет при нагревании, особенно легко - в присутствии паров воды. Если вольфрам нагревать на воздухе, то при 400-500° С на поверхности металла образуется устойчивый низший окисел W0 2 ; вся поверхность затягивается коричневой пленкой. При более высокой температуре сначала получается промежуточный окисел W 4 O 11 синего цвета, а затем лимонножелтая трехокись вольфрама W0 3 , которая возгоняется при 923° С.


Сухой фтор соединяется с тонкоизмельченным вольфрамом уже при небольшом нагревании. При этом образуется гексафторид WF6 - вещество, которое плавится при 2,5° С и кипит при 19,5° С. Аналогичное соединение - WCl 6 - получается при реакции с хлором, но лишь при 600° С. Сине-стального цвета кристаллы WCl 6 плавятся при 275° С и кипят при 347° С. С бромом и йодом вольфрам образует малоустойчивые соединения: пента- и дибромид, тетра- и дииоднд.
При высокой температуре вольфрам соединяется с серой, селеном и теллуром, с азотом и бором, с углеродом и кремнием. Некоторые из этих соединений отличаются большой твердостью и другими замечательными свойствами.
Очень интересен карбонил W(CO) 6 . Здесь вольфрам соединен с окисью углерода и, следовательно, обладает нулевой валентностью. Карбонил вольфрама неустойчив; его получают в специальных условиях. При 0° он выделяется из соответствующего раствора в виде бесцветных кристаллов, при 50° С возгоняется, а при 100° С полностью разлагается. Но именно это соединение позволяет получить тонкие и плотные покрытия из чистого вольфрама.
Не только сам вольфрам, но и многие его соединения весьма активны. В частности, окись вольфрама WO 3 способна к полимеризации. В результате образуются так называемые изополисоединения и гетерополисоединения: молекулы последних могут содержать более 50 атомов.


Сплавы

Почти со всеми металлами вольфрам образует сплавы, однако получить их не так-то просто. Дело в том, что общепринятые методы сплавления в данном случае, как правило, неприменимы. При температуре плавления вольфрама большинство других металлов уже превращается в газы пли весьма летучие жидкости. Поэтому сплавы, содержащие вольфрам, обычно получают методами порошковой металлургии.
Во избежание окисления все операции проводят в вакууме или в атмосфере аргона. Делается это так. Сначала смесь металлических порошков прессуют, затем спекают и подвергают дуговой плавке в электрических печах. Иногда прессуют и спекают один вольфрамовый порошок, а полученную таким путем пористую заготовку пропитывают жидким расплавом другого металла: получаются так называемые псевдосплавы. Этим методом пользуются, когда нужно получить сплав вольфрама с медью и серебром.


С хромом и молибденом, ниобием и танталом вольфрам дает обычные (гомогенные) сплавы при любых соотношениях. Уже небольшие добавки вольфрама повышают твердость этих металлов и их устойчивость к окислению.
Сплавы с железом, никелем и кобальтом более сложны. Здесь, в зависимости от соотношения компонентов, образуются либо твердые растворы, либо интерметаллические соединения (химические соединения металлов), а в присутствии углерода (который всегда имеется в стали) - смешанные карбиды вольфрама и железа, придающие металлу еще большую твердость.
Очень сложные соединения образуются при сплавлении вольфрама с алюминием, бериллием и титаном: в них на один атом вольфрама приходится от 2 до 12 атомов легкого металла. Эти сплавы отличаются жаропрочностью и устойчивостью к окислению при высокой температуре.
На практике чаще всего применяются сплавы вольфрама не с одним каким-либо металлом, а с несколькими. Таковы, в частности, кислотостойкие сплавы вольфрама с хромом и кобальтом или никелем (амалой); из них делают хирургические инструменты. Лучшие марки магнитной стали содержат вольфрам, железо и кобальт. А в специальных жаропрочных сплавах, кроме вольфрама, имеются хром, никель и алюминий.
Из всех сплавов вольфрама наибольшее значение приобрели вольфрамсодержащие стали. Они устойчивы к истиранию, не дают трещин, сохраняют твердость вплоть до температуры красного каления. Инструмент из них не только позволяет резко интенсифицировать процессы металлообработки (скорость обработки металлических изделий повышается в 10-15 раз), но и служит намного дольше, чем тот же инструмент из другой стали.
Вольфрамовые сплавы не только жаропрочны, но и жаростойки. Они не корродируют при высокой температуре под действием воздуха, влаги и различных химических реагентов. В частности, 10% вольфрама, введенного в никель, достаточно, чтобы повысить коррозионную устойчивость последнего в 12 раз! А карбиды вольфрама с добавкой карбидов тантала и титана, сцементированные кобальтом, устойчивы к действию многих кислот - азотной, серной и соляной - даже при кипячении. Им опасна только смесь плавиковой и азотной кислот.

Вольфрам считается самым тугоплавким из известных металлов. Впервые был получен в 18 веке, но промышленное использование началось гораздо позже, с развитием технологии производства.

Основные характеристики

Как самый тугоплавкий металл, вольфрам имеет специфические свойства:

  • Температура плавления вольфрама - примерно соответствует температуре солнечной короны - 3422 °С.
  • Вместе с этим, плотность чистого вольфрама ставит его в один ряд с наиболее плотными металлами. Его плотность практически равна плотности золота - 19,25 г/см 3 .
  • Теплопроводность вольфрама зависит от температуры и составляет от 0,31 кал/см·сек·°С при 20°С до 0,26 кал/см·сек·°С при 1300°С.
  • Теплоемкость также близка к золоту и составляет 0.15·10 3 Дж/(кг·К).

Металл имеет кубическую объемноцентрированную кристаллическую решетку. Несмотря на высокую твердость, вольфрам в нагретом состоянии очень пластичен и ковок, что позволяет изготавливать из него тонкую проволоку, имеющую широкое применение.

Имеет серебристо-серый цвет, который не меняется на открытом воздухе, поскольку вольфраму присуща высокая химическая стойкость, а с кислородом он реагирует только при температуре выше красного каления.

Химические свойства элемента, как правило, начинают проявляться при нагреве выше нескольких сотен градусов. В обычных условиях он не взаимодействует с большинством известных кислот, кроме смеси плавиковой и азотной кислот.
В присутствии определенных окислителей может реагировать с расплавами щелочей. При этом для начала реакции требуется нагрев до температуры 400 - 500 °С, а далее реакция идет бурно, с выделением тепла.

Некоторые соединения, особенно карбид вольфрама, обладают очень высокой твердостью и находят применение в металлургическом производстве для обработки твердых сплавов.

Приведенные характеристики вольфрама определяют специфику областей применения металла, как в чистом виде, так и в составе различных сплавов и химических соединений.
Вольфрам входит в состав многих жаростойких сплавов в качестве легирующей добавки для повышения твердости, температуры плавления и коррозионной стойкости.
Близость плотности и теплоемкости вольфрама и золота теоретически может служить для подделки золотых слитков, однако это легко можно выявить при измерении электрического сопротивления и при переплавке золотого слитка.

Получение вольфрама

В чистом, самородном виде металл в природе не встречается. Большинство месторождений образовано оксидами. Содержание соединений в пересчете на чистый металл в рудном месторождении составляет 0.2 - 2%.
Химическая стойкость и высокая температура плавления допускают получение вольфрама из руды только при использовании специфических методик.

В основе большинства методов промышленного получения вольфрама лежит восстановление металла из его оксида. Первая стадия производства состоит в обогащении вольфрамосодержащей руды. Затем при помощи операций выщелачивания и восстановления получают оксид WO 3 , который восстанавливают до чистого металла в атмосфере водорода. Температура процесса составляет около 700 °С.

В результате реакции получается тонкодисперсный металлический порошок. Высокая температура плавления не позволяет оформить металл в виде слитков, поэтому порошок вольфрама сначала прессуют под высоким давлением, а затем спекают в среде водорода, используя нагрев до температуры 1300 °С. Через полученные бруски пропускают мощный электрический ток. В результате высокого переходного сопротивления между зернами металла происходит нагрев и плавление заготовки.

Очистку полученного слитка производят методом зонной плавки, подобно технологии получения сверхчистых полупроводников. Производство вольфрама по данной технология позволяет получить металл высокой степени чистоты без дополнительных операций очистки.

При производстве сплавов, все составляющие добавляются еще перед стадией прессования порошка, поскольку в дальнейшем это сделать уже невозможно. В процессе прессовки, спекания и дальнейшей обработки заготовки (прессование, прокатка) обеспечивается равномерное распределение примесей в сплаве.

Обработка вольфрама производится при температурах около полутора тысяч градусов. При таком нагреве металл становится очень пластичным и допускает ковку, штамповку. Тонкая проволока для спиралей ламп накаливания изготавливается методом волочения. При этом кристаллы металлы располагаются вдоль проволоки, повышая ее прочность. Поскольку к спиралям ламп предъявляются высоки требования по однородности, вольфрамовый провод дополнительно подвергают операциям электрохимического полирования.

Применение вольфрама

Большинство областей применения вольфрама используют такие его качества, как высокая температура плавления, плотность и пластичность. Вольфрам незаменим в следующих областях:

  • Чистый вольфрам, это единственный металл, который применяется в нитях накаливания осветительных ламп, радиолампах, кинескопах и прочих электровакуумных приборах;
  • В чистом виде и в составе сплавов используется при производстве сердечников подкалиберных бронебойных снарядов и пуль;
  • Высокая плотность вольфрама позволяет изготавливать роторы малогабаритных гироскопов ракетной техники и космических аппаратов;
  • Изготовление неплавящихся электродов при аргонно-дуговой сварке;
  • Устройства защиты от ионизирующих излучений из вольфрама эффективнее, чем традиционные свинцовые. Использование вольфрама экономически выгодно, несмотря на более высокую стоимость, чем у свинца. Это вызвано тем, что расход вольфрама при тождестве технических характеристик изделия намного меньше.
  • Изделия из вольфрама не нуждаются в защите от коррозии благодаря низкой химической активности при нормальных температурных условиях.

Соединения вольфрама с углеродом более известны как «победит». Их высокая твердость используется в режущих напайках металлообрабатывающих инструментов - резцов, сверл, фрез. Инструменты с победитовыми напайками используются для обработки практически любых материалов, начиная от древесины, где почти не требуют периодической заточки, до любых пород камня. Для заточки победитовых инструментов требуются абразивы с самой высокой твердостью. В полной мере этому соответствуют алмазные и эльборовые абразивы имеющие самую высокую твердость среди всех известных.

Победитовые напайки крепятся к рабочим кромкам инструмента при помощи пайки медью. В качестве флюса используется бура.

Карбид вольфрама используется в ювелирных изделиях, в частности, в кольцах. Высокая твердость материала позволяет сохранить блеск изделия в течение всего срока службы.

Победит изготавливают порошковым методом, используя для скрепления кристаллом карбида вольфрама кобальт.

Сплавы на основе вольфрама

Сплавы вольфрама возможно получить исключительно методом порошковой металлургии. Это вызвано большой разницей температур плавления входящих в состав сплава металлов. Порошки исходных составляющих после смешивания прессуются, а затем подвергаются спеканию. В результате капиллярных сил более легкоплавкие металлы заполняют пространство между зернами вольфрама, образуя монолитный сплав. На границах зерен образуются твердые растворы компонентов сплава.

Наибольшее распространение получили сплавы вольфрама с медью, железом и никелем. Самые распространенные сплавы ВНЖ и ВНМ включают в себя вольфрам - никель - железо и вольфрам - никель - медь.

Для достижения особых характеристик в состав могут входить также серебро, хром, кобальт и молибден.

Вольфрамовые сплавы находят применение для изготовления деталей и устройств, в которых важна высокая плотность при малых габаритных размерах. Это всевозможные противовесы, маховики, грузы центробежных регуляторов, сердечники пуль и снарядов.

Известно не очень много марок вольфрама. В первую очередь, это технически чистый вольфрам - ВЧ.

Используемые в промышленности марки вольфрама обычно включают в себя некоторые добавки. Материал, легированный лантаном, обозначается как ВЛ, иттрием - ВИ. Указанные легирующие добавки еще более улучшают механические и технологические качества металла.

Сплавы с рением - ВР5, ВР20 - используются в производстве высокотемпературных термопар.

Легирование торием повышает эмиссионные свойства вольфрама, что особенно важно при изготовлении катодов мощных электровакуумных ламп. Данная добавка также улучшает способность к зажиганию электрической дуги при аргонно-дуговой сварке.

Сплавы вольфрама с медью и серебром используются для изготовления контактов сильноточной коммутационной аппаратуры. Медь и серебро при высокой электропроводности не обладают высокой механической прочностью. При прохождении высоких токов возможно расплавление контактных групп. Контакты из вольфрамовых сплавов свободны от этих недостатков, не смотря на несколько большее электрическое сопротивление.

Высокая плотность сплавов позволят использовать их для изготовления контейнеров для хранения радиоактивных веществ, экранов для защиты от γ-излучения.

Какова плотность вольфрама? На чем основывается его применение? Будем искать ответы на поставленные вопросы вместе.

Положение в ПС

Данный химический элемент располагается в шестой группе периодической системы. Его порядковый номер 74, величина относительной атомной массы 183,85. Особые определяются его высокой температурой плавления. Он считается одним из В природном вольфраме содержится пять стабильных изотопов, которые имеют сходные массовые числа от 180 до 186.

Открытие элемента

Данный химический элемент был обнаружен в конце 18 века. К. Шееле удалось выделить его из минерала, в котором металл содержался в виде оксида. Долгое время вольфрам практически не имел промышленного применения, был не востребован. Только в середине 19 века металл начали применять как добавку при изготовлении прочной стали.

В земной коре данный элемент находится в незначительном количестве. В свободном виде не встречается, располагается только в виде минералов. В промышленных масштабах применяют его оксиды.

Физические свойства

19300 - это плотность вольфрама кг/м3 при нормальных условиях. Металл образует объемно-концентрическую кубическую решетку. Он имеет неплохой показатель теплоемкости. Высокий температурный коэффициент вольфрама объясняет его тугоплавкость. Температура плавления составляет 3380 градусов по шкале Цельсия. На механические свойства оказывает влияние его предварительная обработка. Учитывая, плотность вольфрама при 20 с 19, 3 г/см3, его можно довести до состояния монокристаллического волокна. Данное свойство используется при изготовлении из него проволоки. В условиях комнатной температуры вольфрам имеет незначительную пластичность.

Особенности вольфрама

Существенная плотность вольфрама придает данному металлу определенные свойства. У него достаточно невысокая скорость испарения, высокая точка кипения. По показателю вольфрам ниже аналогичного показателя меди в три раза. Именно большая плотность вольфрама ограничивает сферы его использования. Кроме того, на использовании сказывается его повышенная ломкость при низких температурах, неустойчивость к окислению кислородом воздуха при незначительных температурах.

По внешним характеристикам вольфрам имеет сходство со сталью. Он применяется для изготовления сплавов, характеризующихся повышенной прочностью. Обработка вольфрама осуществляется только при повышенной температуре.

Марки вольфрама

Не только плотность вольфрама, но и добавки, используемые в металлургии, отражаются на марке данного металла. Например, ВА предполагает смесь вольфрама с алюминием и кремнием. Для получаемой марки характерна повышенная температура начальной рекристаллизации, прочность после отжига.

ВЛ предполагает добавление к вольфраму в качестве присадки оксида лантана, повышающей эмиссионные свойства металла.

МВ - это сплав вольфрама и молибдена. Подобный состав повышает прочность, сохраняет пластичность металла после отжига.

Сфера использования вольфрама

Уникальные свойства данного металла предопределяют его применение. В промышленных объемах он используется и в чистом виде, и в качестве сплавов.

Вольфрам в быту используется в основном в электротехнических целях.

Именно он применяется как основной компонент (легирующий элемент) в процессе производства быстрорежущих сталей. В среднем содержание вольфрама составляет от девяти до двадцати процентов. Кроме того, он входит в состав инструментальных сталей.

Подобные вилы сталей применяют для изготовления фрез, сверл, пуансонов, штампов. Например, Р6М5 свидетельствуют о том, что сталь легирована кобальтом и молибденом. Кроме того, вольфрам содержится в которые подразделяют на вольфрамокобальтовые и вольфрамовые виды.

Вольфрам в быту в чистом виде практически не востребован. Карбид вольфрама представляет собой соединение этого металла с углеродом. Соединение отличается высокой твердостью, тугоплавкостью, а также износостойкостью. На базе карбида вольфрама изготавливают инструментальные производительные твердые сплавы, содержащие около 90 процентов вольфрама и около 10 процентов кобальта. Из твердых сплавов создают режущие части буровых и режущих инструментов.

Разновидности сталей на основе вольфрама

Износостойкие и основываются на тугоплавкости вольфрама. В промышленности распространены соединения вольфрама с хромом и кобальтом, которые называют стеллитами. Их путем наплавки наносят на изнашиваемые части деталей промышленных машин.

«Тяжелые» и контактные сплавы - это смеси вольфрама с серебром или с медью. Они считаются достаточно эффективными контактными материалами, поэтому применяются для производства рабочих деталей рубильников, электродов для осуществления точечной сварки, а также изготовления выключателей.

В виде проволоки, кованых изделий, ленты вольфрам используют в радиотехнике, в изготовлении электрических ламп, а также в рентгенотехнике. Именно этот металл считается лучшим материалом для создания спиралей и нитей накаливания.

Вольфрамовые прутки и проволока необходимы для изготовления электрических нагревателей для Нагреватели на основе вольфрама способны работать в атмосфере инертного газа, водорода, а также в вакууме.

Одной из важнейших отраслей использования вольфрама является сварка. Из него создают электроды, которые применяют для дуговой сварки. Получаемые электроды считаются неплавящимися.

Получение тугоплавкого металла

Сколько стоит вольфрам? Цена за кг находится в диапазоне от 900 до 1200 рублей. Его относят к группе редких металлических элементов. Кроме вольфрама сюда же причисляют рубидий, молибден. Редкие металлы имеют незначительные масштабы использования, учитывая их несущественное содержание в земной коре. Ни один из перечисленных металлов нельзя получить путем непосредственного восстановления из сырья. Для начала сырье перерабатывают на различные химические вещества. Отметим, что осуществляется и специальное дополнительное обогащение руд до их полноценной переработки.

В технологической цепочке получения редкого вольфрама выделяют три стадии. Сначала проводят разложение руды, отделяя извлекаемый металл от массы сырья, а также его концентрирование в осадке либо в растворе. Далее выполняется получение химически чистых соединений, проводится выделение, а также очистка химического вещества. На третьем этапе выделяют металл из очищенного от примесей оксида.

В качестве исходного сырья при изготовлении вольфрама выступает вольфрамит. Такая руда содержит около двух процентов чистого металла. Обогащение руды осуществляется путем флотации, гравитации, электромагнитной либо магнитной сепарации. После обогащения образуется вольфрамовый концентрат, в котором содержится около 65 процентов оксида вольфрама (6). Помимо металла, в таких концентратах содержатся примеси серы, меди, фосфора, мышьяка, висмута, сурьмы. Сколько стоит такой вольфрам? Цена за кг составляет около тысячи рублей. Чтобы изготовить вольфрамовый порошок, необходимо провести восстановление его ангидрида углеродом либо водородом.

В основном применяют метод гидрирования, так как углерод добавляет металлу хрупкости, негативно отражается на его обрабатываемости. Для изготовления вольфрамового порошка применяют специальные методы, которые позволяют анализировать состав, размер зерен, а также состав образуемых гранул.

Компактный водород в основном в виде слитков либо штабиков применяют как заготовки при изготовлении таких полуфабрикатов, как лента, проволока.

В настоящее время применяют две методики создания компактного вольфрама. Первый метод предполагает использование порошковой металлургии. По второй методике допускается применение дуговых электрических печей, предполагающих применение расходуемых электродов.

Самыми распространенными видами продукции, создаваемой из металлического вольфрама и имеющей особое значение, являются вольфрамовые прутки. Путем ковки их получают из штабиков на специальной ковочной машине. Применяют готовую продукцию в различных отраслях современной промышленности. К примеру, именно из них получают сварочные неплавящиеся электроды. Кроме того, вольфрамовые прутки применяют и при создании нагревателей. Они востребованы в газоразрядных приборах, электролампах.

К группе металлов, отличающихся высокими показателями тугоплавкости, относится и вольфрам. Он был открыт в Швеции химиком по имени Шееле. Именно ему удалось первому в 1781 году из минерала вольфрамит выделить оксид неизвестного металла. Вольфрам в чистом виде ученому удалось получить по прошествии 3 лет.

Описание

Вольфрам относится к группе материалов, которые часто используются в различных отраслях промышленности. Он обозначается буквой W и в таблице Менделеева имеет порядковый номер 74. Для него характерен светло-серый цвет. Одно из его характерных качеств - высокая тугоплавкость. Температура плавления вольфрама составляет 3380 градусов Цельсия. Если рассматривать его с точки зрения применения, то самыми важными качествами этого материала являются:

  • плотность;
  • температура плавления;
  • электрическое сопротивление;
  • коэффициент линейного расширения.

Вычисляя его характерные качества, необходимо выделить высокую точку кипения, которая находится на уровне 5 900 градусов Цельсия . Еще одна его особенность - малая скорость испарения. Она невысока даже в температурных условиях 2000 градусов Цельсия. По такому свойству, как электропроводность этот металл в 3 раза превосходит такой распространенный сплав, как медь.

Факторы, ограничивающие применение вольфрама

Есть ряд факторов, которые ограничивают применение этого материала:

  • высокая плотность;
  • значительная склонность к ломкости в условиях низких температур;
  • малое сопротивление окислению.

По своему внешнему виду вольфрам имеет сходство с обычной сталью . Его основное применение связано главным образом с производством сплавов с высокими прочностными характеристиками. Этот металл поддается обработке, но только если его предварительно нагреть. В зависимости от выбранного типа обработки нагрев производится до определенной температуры. Например, если стоит задача выковать прутки из вольфрама, то заготовку необходимо предварительно нагреть до температуры 1450-1500 градусов Цельсия.

На протяжении 100 лет вольфрам не применялся в промышленных целях. Его использование при производстве различной техники сдерживалось его высокой температурой плавления.

Начало его промышленного применения связано с 1856 годом, когда он впервые стал использоваться для легирования инструментальных марок стали. При их производстве в состав стали добавлять вольфрам общей долей до 5%. Присутствие этого металла в составе стали позволило повысить скорость резки на токарных станках с 5 до 8 м в минуту .

Развитие промышленности во второй половине XIX века характеризуется активным развитием отрасли производства станков. Спрос на оборудование с каждым годом постоянно возрастал, что требовало от машиностроителей получения качественных характеристик машин, а помимо этого повышения их рабочей скорости. Первым импульсом в деле повышения скорости резки стало использование вольфрама.

Уже в начале XX века скорость резки была доведена до 35 метров в минуту . Добиться этого удалось за счет легирования стали не только вольфрамом, но и другими элементами:

  • молибденом;
  • хромом;
  • ванадием.

В дальнейшем скорость резания на станках возросла до 60 метров в минуту. Но, несмотря на такие высокие показатели, специалисты понимали, что есть возможность улучшить эту характеристику. Какой способ выбрать для повышения скорости резания, специалисты долго не думали. Они прибегли к использованию вольфрама, но уже в виде карбидов в союзе с другими металлами и их видами. В настоящее время вполне обычной является скорость резания металла на станках 2000 метров в минуту.

Как и у любого материала, у вольфрама имеются свои особые свойства, благодаря которым он попал в группу стратегических металлов. Выше мы уже сказали о том, что одним из достоинств этого металла является высокая тугоплавкость. Именно благодаря этому свойству материал можно использовать для изготовления нитей накаливания.

Температура плавления у него находится на уровне 2500 градусов Цельсия . Но только этим качеством положительные свойства этого материала не ограничиваются. Имеются у него и другие преимущества, о которых следует сказать. Одно из них - высокая прочность, демонстрируемая в условиях обычных и повышенных температур. Например, когда железо и сплавы, изготовленные на его основе, нагреваются до температуры 800 градусов Цельсия, происходит снижение прочности в 20 раз. В таких же условиях прочность вольфрама уменьшается только в три раза. В условиях 1500 градусов Цельсия прочность железа практически сведена к нулю, а вот у вольфрама она находится на уровне железа при обыкновенной температуре.

В наши дни 80% производимого в мире вольфрама используется главным образом при изготовлении стали высокого качества. Более половины марок стали, используемых машиностроительными предприятиями, содержат в своем составе вольфрам. Они применяют их в качестве основного материала для деталей турбин , редукторов, а также используют такие материалы для изготовления компрессорных машин. Из машиностроительных сталей, содержащих вольфрам, изготавливаются валы, зубчатые колеса, а также цельнокованый ротор.

Кроме этого их применяют для изготовления коленчатых валов, шатунов. Добавление в состав машиностроительный стали, кроме вольфрама и других легирующих элементов, повышает их прокаливаемость. Кроме этого, обеспечивается возможность для получения мелкозернистой структуры. Наряду с этим, у производимых машиностроительных сталей увеличиваются такие характеристики, как твердость и прочность.

При производстве жаропрочных сплавов использование вольфрама является одним из обязательных условий. Необходимость применения именно этого металла обусловлена тем, что он является единственным, который в состоянии выдерживать существенные нагрузки в условиях высоких температур, превышающих величину плавления железа. Вольфрам и соединения на основе этого металла отличаются высокой прочностью и обладают хорошими показателями упругости. В этом плане они превосходят другие металлы, входящие в группу тугоплавких материалов.

Минусы

Однако, перечисляя преимущества вольфрама, нельзя не отметить и недостатки, которые присущи этому материалу .

Вольфрам, который выпускается в настоящее время, содержит в составе торий 2%. Такой сплав называется торированный вольфрам. Для него характерен предел прочности 70 МПа при температуре 2420 градусов Цельсия. Хотя значение этого показателя невысоко, но отметим, что только 5 металлов вместе с вольфрамом не меняют своего твердого состояния в условиях такой температуры.

В эту группу входят молибден, у которого температура плавления составляет 2625 градусов. Еще один металл - технеций. Однако сплавы на его основе в ближайшее время вряд ли будут производиться. Рений и тантал не обладают высокой прочностью при таких условиях температуры. Поэтому вольфрам - единственный материал, который в состоянии обеспечить достаточную прочность при высоких температурных нагрузках. По той причине, что он относится к числу дефицитных, если имеется возможность для его замены, то производители используют альтернативу ему.

Однако при производстве отдельных компонентов нет материалов, которые могли бы полноценно заменить вольфрам. Например, при изготовлении нитей накаливания электроламп и анодов дуговых ламп постоянного тока применяется только вольфрам, поскольку подходящих заменителей просто нет. Также его используют при изготовлении электродов для аргонодуговой и атомно-водородной сварки. Также с применением этого материала изготавливается нагревательный элемент, используемый в условиях от 2000 градусов Цельсия.

Применение

Вольфрам и сплавы, изготавливаемые на его основе, получили широкое распространение в различных отраслях промышленности. Их используют при производстве авиационных двигателей, применяют в сфере ракетостроения, а также для производства космической техники. В этих сферах с использованием этих сплавов изготавливают реактивные сопла, вставки критических сечений в двигателях ракет. Кроме этого, подобные материалы используются в качестве основных для изготовления сплавов ракет.

Производство сплавов из этого металла имеет одну особенность, которая связана с тугоплавкостью этого материала. В условиях высоких температур многие металлы меняют свое состояние и превращаются в газы или сильно летучие жидкости. Поэтому для получения сплавов, в составе которых присутствует вольфрам, используют методы порошковой металлургии.

Такие методы предполагают прессование смеси порошков металлов, последующее спекание и дальнейшее подвергание их дуговой плавке, осуществляемой в электродных печах. В отдельных случаях спекаемый вольфрамовый порошок дополнительно пропитывают жидким раствором какого-либо другого металла. Таким образом, получаются псевдосплавы из вольфрама, меди, серебра, используемые для контактов в электрических установках. По сравнению с медными, долговечность у таких изделий выше в 6-8 раз.

У этого металла и сплавов из него имеются большие перспективы для дальнейшего расширения сферы применения. Прежде всего, необходимо отметить, что в отличие от никеля эти материалы могут работать на «огненных» рубежах. Использование вместо никеля вольфрамовых изделий приводит к тому, что у энергетических установок повышаются параметры работы. А это приводит к возрастанию КПД оборудования . Кроме того, изделия на основе вольфрама легко выдерживают эксплуатацию в тяжелых условиях. Таким образом, можно уверенно заявлять о том, что группу таких материалов в ближайшее время вольфрам продолжит возглавлять.

Вольфрам поспособствовал и процессу усовершенствования электрической лампы накаливания. До периода 1898 года в этих электроосветительных приборах использовалась угольная нить.

  • она была простой в изготовлении;
  • её производство было недорогим.

Единственным недостатком угольной нити было то, что срок службы у неё был небольшой. После 1898 года у угольной нити накаливания ламп появился конкурент в виде осмия. Начиная с 1903 года, для производства электрических ламп стали использовать тантал. Однако уже в 1906 году вольфрам вытеснил эти материалы и стал применяться для изготовления нитей для ламп накаливания. Используют его и в наши дни при изготовлении современных электрических лампочек.

Чтобы обеспечить этому материалу высокие показатели жаростойкости, на поверхность металла наносят слой рения и тория. В некоторых случаях нить накаливания из вольфрама изготавливается с добавлением рения. Связано это с тем, что в условиях высоких температур этот металл начинает испаряться, а это приводит к тому, что нить из этого материала становится тоньше. Добавление в состав рения приводит к уменьшению эффекта испарений в 5 раз.

В наше время вольфрам активно применяется не только при производстве электротехники, но и различной военно-промышленной продукции . Его добавление в оружейную сталь обеспечивает высокую эффективность материалам такого вида. Кроме того, он позволяет улучшить характеристики броневой защиты, а также сделать более эффективными бронебойные снаряды.

Заключение

Вольфрам - один из востребованных материалов, применяемых в металлургии. Добавление его в состав производимых сталей обеспечивает повышение их характеристик. Они становятся более стойкими к термическим нагрузкам, а кроме этого повышается температура плавления, что особенно важно для изделий, используемых в экстремальных условиях при высоких температурах . Использование при производстве различного оборудования, изделий и элементов, узлов из этого металла или сплавов на его основе позволяет улучшить характеристики оборудования и повысить КПД их работы.

Вольфрам в современной технике играет исключительно важную роль. Он применяется в сталелитейной промышленности, при производстве твердых сплавов, при производстве кислотоупорных и других специальных сплавов, в электротехнике, при производстве красителей, в качестве химических реактивов и пр.

Около 70% всего добываемого вольфрама идет на производство ферровольфрама, в виде которого он вводится в сталь. В наиболее богатых вольфрамом и наиболее распространенных вольфрамовых сталях(в быстрорежущих) вольфрам образует сложные вольфрамсодержащие карбиды, увеличивающие твердость стали, в особенности при повышенных температурах(красностойкость), Известно, что введение в практику работы металлообрабатывающих заводов резцов из стали, содержащей вольфрам, позволило во много раз увеличить скорости резания. В настоящее время резцы из быстрорежущей стали уступают место резцам из металлокерамических твердых сплавов, изготовляемых на основе карбида вольфрама с добавлением цементирующей добавки.В некоторые твердые сплавы вводятся также карбиды титана, тантала и ниобия. Современные скорости резания, достигнутые новаторами производства, получены именно с резцами из твердых сплавов.Сплавы вольфрама с другими металлами имеют самое разнообразное применение: никельвольфрамохромовый сплав отличается кислотоупорными свойствами. Обращают на себя внимание сплавы вольфрама, обладающие повышенной жаропрочностью: например, добавка 1% ниобия, тантала, молибдена, образующих с вольфрамом твердый раствор, повышает температуру плавления металла выше 3300 °C., тогда как добавка 1% железа, весьма мало растворимого в вольфраме, понижает температуру плавления до 1640°C. В США широко развернуты исследования в этой области.

Металлический вольфрам находит разнообразное применение в электро-и рентгенотехнике. Из вольфрама изготовляют нити накала электрических ламп. Вольфрам для этой цели особенно пригоден благодаря большой тугоплавкости и очень малой летучести: при температурах порядка 2500°C, при которых работают нити накала, упругость паров вольфрама не достигает 1 мм рт.ст. Из металлического вольфрама изготовляют также нагреватели для электрических печей, выдерживающие температуры до 3000°C.Металлический вольфрам применяется для антикатодов рентгеновских трубок, для различных деталей электровакуумной аппаратуры, для радиоприборов, выпрямителей тока и.т.д. Тонкие вольфрамовые нити применяются в гальванометрах. Подобные же нити применяются для хирургических целей. Наконец, из металлического вольфрама изготовляются различные спиральные пружины, а также детали, для которых требуется материал, устойчивый по отношению к различным химическим воздействиям.

Соединения вольфрама применялись очень широко как красители. В Китае сохранились старинные, изделия из фарфора, окрашенного в необычный цвет "персика", исследования показали, что краска содержит вольфрам.

Соли вольфрама применяются для придания огнестойкости некоторым тканям. Тяжелые дорогие шелка обязаны своей красотой вольфрамовым солям, которыми они пропитаны.

Чистые вольфрамовые препараты применяются в химическом анализе как реактивы на алкалоиды и другие вещества. Соединения вольфрама применяются также в качестве катализаторов.

  1. Мы предлагаем следующую продукцию из вольфрама: вольфрамовую полосу, вольфрамовую проволоку, вольфрамовый пруток, вольфрамовый штабик.
Выбор редакции
Солдаты, одетые в костюмы химической защиты, пробираются через туннель в Кэмп Стенли, Южная Корея. В Корее угроза «туннельной войны» со...

Если Вы внезапно захворали и не можете справиться с тяжелой болезнью, обязательно прочитайте молитву Святому Луке об исцелении и...

Самое подробное описание: молитва что бы от любимого отстала соперница - для наших читателей и подписчиков.Любовь - очень сильное...

Данная статья содержит: молитва к пресвятой богородице основная - информация взята со вcех уголков света, электронной сети и духовных...
Очистить карму можно при помощи молитвы «На очищение рода» . Она снимает «кармические» или родовые проблемы нескольких поколений, такие...
Н. С. Хрущёв со своей первой женой Е. И. Писаревой. В первый раз Никита Хрущёв женился ещё в 20-летнем возрасте на красавице Ефросинье...
Черехапа редко балует нас промокодами. В июле наконец-то вышел новый купон на 2019 год. Хотите немного сэкономить на страховке для...
Спор можно открыть не раньше чем через 10 дней, после того как продавец отправит товар и до того как Вы подтвердите получение товара, но...
Рано или поздно, каждый покупатель сайта Алиэкспресс сталкивается с ситуацией, когда заказанный товар не приходит. Это может случится из...