Вычисление силы архимеда. Закон Архимеда: история открытия и суть явления для чайников


В предыдущем параграфе мы назвали две формулы, при помощи которых силу Архимеда можно измерить. Теперь выведем формулу, при помощи которой силу Архимеда можно вычислить.

Закон Архимеда для жидкости выражается формулой (см. § 3-е):

Примем, что вес вытесненной жидкости равен действующей силе тяжести:

Wж = Fтяж = mжg

Масса вытесненной жидкости может быть найдена из формулы плотности:

r = m/V Ю mж = rжVж

Подставляя формулы друг в друга, получим равенство:

Fарх = Wж = Fтяж = mж g = rжVж g

Выпишем начало и конец этого равенства:

Fарх = rж gVж

Вспомним, что закон Архимеда справедлив для жидкостей и газов. Поэтому вместо обозначения «rж» более правильно использовать «rж/г». Также заметим, что объём жидкости, вытесненной телом, в точности равен объёму погруженной части тела: Vж = Vпчт. С учётом этих уточнений получим:

Итак, мы вывели частный случай закона Архимеда – формулу, выражающую способ вычисления силы Архимеда. Вы спросите: почему же эта формула – «частный случай», то есть менее общая?

Поясним примером. Вообразим, что мы проводим опыты в космическом корабле. Согласно формуле Fарх = Wж, архимедова сила равна нулю (так как вес жидкости равен нулю), согласно же формуле Fарх = rж/г gVпчт архимедова сила нулю не равна, так как ни одна из величин (r, g, V) в невесомости в ноль не обращается. Перейдя от воображаемых опытов к настоящим, мы убедимся, что справедлива именно общая формула.

Продолжим наши рассуждения и выведем ещё один частный случай закона Архимеда. Посмотрите на рисунок. Поскольку бревно находится в покое, следовательно, на него действуют уравновешенные силы – сила тяжести и сила Архимеда. Выразим это равенством:

Fарх = Fтяж

Или, подробнее:

rж gVпчт = mт g

Разделим левую и правую части равенства на коэффициент «g»:

rж Vпчт = mт

Вспомнив, что m = rV, получим равенство:

rж Vпчт = rт Vт

Преобразуем это равенство в пропорцию:

В левой части этой пропорции стоит дробь, показывающая долю, которую составляет объём погруженной части тела от объёма всего тела. Поэтому всю дробь называют погруженной долей тела:

Используя эту формулу, предскажем, чему должна быть равна погруженная доля бревна при его плавании в воде:

ПДТ (полена) » 500 кг/м 3: 1000 кг/м 3 = 0,5

Число 0,5 означает, что плавающее в воде бревно погружено наполовину. Так предсказывает теория, и это совпадает с практикой.

Итак, обе формулы в рамках являются менее общими, чем исходная, то есть имеют более узкие границы применимости . Почему же так произошло? Причина – применение нами формулы W = F тяж. Вспомним, что она не верна, если тело или его опора (подвес) движутся непрямолинейно (см. § 3-г). Упоминавшийся нами космический корабль именно так и движется – по круговой орбите вокруг Земли.

Разные предметы в жидкости ведут себя по-разному. Одни тонут, другие остаются на поверхности и плавают. Почему так происходит, объясняет закон Архимеда, открытый им при весьма необычных обстоятельствах и ставший основным законом гидростатики.

Как Архимед открыл свой закон

Легенда рассказывает нам, что Архимед открыл свой закон случайно. И этому открытию предшествовало следующее событие.

Царь Сиракуз Гиерон, правивший в 270-215 г.г. до н.э., заподозрил своего ювелира в том, что тот подмешал в заказанную ему золотую корону некоторое количество серебра. Чтобы развеять сомнения, он попросил Архимеда подтвердить или опровергнуть свои подозрения. Как истинного учёного, Архимеда увлекла эта задача. Для её решения нужно было определить вес короны. Ведь если в неё подмешано серебро, то её вес отличался бы от того, как если бы она была сделана из чистого золота. Удельный вес золота был известен. Но как вычислить объём короны? Ведь она имела неправильную геометрическую форму.

Согласно легенде, однажды Архимед, принимая ванну, размышлял над задачей, которую ему предстояло решить. Неожиданно учёный обратил внимание на то, что уровень воды в ванне стал выше после того, как он в неё погрузился. Когда он поднялся, уровень воды снизился. Архимед заметил, что своим телом вытесняет из ванны какое-то количество воды. И объём этой воды равнялся объёму его собственного тела. И тут он понял, как решить задачу с короной. Достаточно лишь погрузить её в сосуд, наполненный водой, и измерить объём вытесненной воды. Говорят, что он так обрадовался, что с криком «Эврика!» («Нашёл!») выскочил из ванны, даже не одевшись.

Так ли это было на самом деле или нет, значения не имеет. Архимед нашёл способ измерения объёма тел со сложной геометрической формой. Он впервые обратил внимание на свойства физических тел, которые называют плотностью, сопоставив их не друг с другом, а с весом воды. Но самое главное, им был открыт принцип плавучести .

Закон Архимеда

Итак, Архимед установил, что тело, погружённое в жидкость, вытесняет такой объём жидкости, который равен объёму самого тела. Е сли в жидкость погружается только часть тела, то оно вытеснит жидкость, объём которой будет равен объёму только той части, которая погружается.

А на само тело в жидкости действует сила, которая выталкивает его на поверхность. Её величина равна весу вытесненной им жидкости. Эту силу называют силой Архимеда .

Для жидкости закон Архимеда выглядит так: на тело, погружённое в жидкость, действует выталкивающая сила, направленная вверх, и равная весу вытесненной этим телом жидкости.

Величина силы Архимеда вычисляется следующим образом:

F A = ρ ɡ V ,

где ρ – плотность жидкости,

ɡ - ускорение свободного падения

V – объём погружённого в жидкость тела, или часть объёма тела, находящаяся ниже поверхности жидкости.

Сила Архимеда всегда приложена к центру тяжести объёма и направлена противоположно силе тяжести.

Следует сказать, что для выполнения этого закона должно соблюдаться одно условие: тело либо пересекается с границей жидкости, либо со всех сторон окружено этой жидкостью. Для тела, которое лежит на дне и герметично касается его, закон Архимеда не действует. Так, если мы положим на дно кубик, одна из граней которого будет плотно соприкасаться с дном, закон Архимеда для него мы не сможем применить.

Силу Архимеда называют также выталкивающей силой .

Эта сила по своей природе – сумма всех сил давления, действующих со стороны жидкости на поверхность тела, погружённого в неё. Выталкивающая сила возникает из-за разности гидростатического давления на разных уровнях жидкости.

Рассмотрим эту силу на примере тела, имеющего форму куба или параллелограмма.

P 2 – P 1 = ρ ɡ h

F A = F 2 – F 1 = ρɡhS = ρɡhV

Закон Архимеда действует и для газов. Но в этом случае выталкивающая сила называется подъёмной, а для её вычисления плотность жидкости в формуле заменяют на плотность газа.

Условие плавания тела

От соотношения значений силы тяжести и силы Архимеда зависит, будет ли тело плавать, тонуть или всплывать.

Если сила Архимеда и сила тяжести равны по величине, то тело в жидкости находится в состоянии равновесия, когда оно не всплывает и не погружается. Говорят, что оно плавает в жидкости. В этом случае F T = F A .

Если же сила тяжести больше силы Архимеда, тело погружается, или тонет.

Здесь F T ˃ F A .

А если значение силы тяжести меньше силы Архимеда, тело всплывает. Это происходит, когда F T ˂ F A .

Но всплывает оно не бесконечно, а лишь до того момента, пока сила тяжести и сила Архимеда не сравняются. После этого тело будет плавать.

Почему не все тела тонут

Если положить в воду два одинаковых по форме и размерам бруска, один из которых сделан из пластмассы, а другой из стали, то можно увидеть, что стальной брусок утонет, а пластмассовый останется на плаву. Так же будет, если взять любые другие предметы одинаковых размеров и формы, но разные по весу, например, пластмассовый и металлический шарики. Металлический шарик пойдёт ко дну, а пластмассовый будет плавать.

Но почему же ведут себя по-разному пластмассовый и стальной бруски? Ведь их объёмы одинаковы.

Да, объёмы одинаковы, но сами бруски сделаны из разных материалов, которые имеют разную плотность. И если плотность материала выше плотности воды, то брусок утонет, а если меньше – будет всплывать до тех пор, пока не окажется на поверхности воды. Это справедливо не только для воды, но и для любой другой жидкости.

Если обозначить плотность тела P t , а плотность среды, в которой оно находится, как P s , то если

P t ˃ Ps (плотность тела выше плотности жидкости) – тело тонет,

P t = Ps (плотность тела равна плотности жидкости) – тело плавает в жидкости,

P t ˂ Ps (плотность тела меньше плотности жидкости) – тело всплывает, пока не окажется на поверхности. После чего оно плавает.

Не выполняется закон Архимеда и в состоянии невесомости. В этом случае отсутствует гравитационное поле, а, значит, и ускорение свободного падения.

Свойство тела, погруженного в жидкость, оставаться в равновесии, не всплывая и не погружаясь дальше, называется плавучестью .

Существование гидростатического давления приводит к тому, что на любое тело, находящееся в жидкости или газе, действует выталкивающая сила. Впервые значение этой силы в жидкостях определил на опыте Архимед. Закон Архимеда формулируется так: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу того количества жидкости или газа, которое вытеснено погруженной частью тела.

Рассмотрим теоретический вывод закона Архимеда. В сосуд налита жидкость и погружено тело, имеющее форму куба. Ребро куба равно l. Верхняя грань куба находится от поверхности жидкости на глубине h, а нижняя - на глубине h+l. На все грани куба жидкость оказывает давление. При этом силы давления, действующие на боковые грани куба, взаимно компенсируются. На верхнюю грань куба действует направленная вниз сила давления F 1 , модуль которой

F1=r ж ghS (5.6)

где r ж - плотность жидкости; S - площадь грани куба. На нижнюю грань куба действует направленная вверх сила давления F 2 , модуль которой

F 2 =r ж g(h+l)S. (5.7)

Так как h 1 2 , т.е. равнодействующая этих двух сил направлена вертикально вверх и представляет собой выталкивающую (архимедову ) силу:

F A =F 2 -F 1 (5.8)

Подставив (5.6) и (5.7) в (5.8), найдем, что модуль архимедовой силы

F a =r ж g l S=r ж gV=P ж (5.9)

где V - объем куба (т. е. объем жидкости, вытесненной погруженным телом); P ж - вес вытесненной жидкости. Следовательно, выталкивающая сила по модулю равна весу жидкости, вытесненной погруженной частью тела.

Архимедова сила F A приложена к телу в центре масс вытесненной телом жидкости и направлена против силы тяжести, действующей на это тело. (Необходимо помнить, что закон Архимеда справедлив только при наличии тяжести. В условиях невесомости он не выполняется.)

Условие плавания тел

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести F т и архимедовой силы F A , которые действуют на это тело. Возможны следующие три случая:

  1. F т >F A - тело тонет;
  2. F т =F A - тело плавает в жидкости или газе;
  3. F т A - тело всплывает до тех пор, пока не начнет плавать.

Проверка справедливости закона Архимеда для газов

Под колокол вакуумного насоса помещают равноплечие весы, на которые подвешены пустотелый стеклянный шар большого объема и гиря, уравновешивающая вес этого шара в воздухе. Если откачать из-под колокола воздух, то равновесие нарушится и коромысло весов, на котором подвешен шар, опустится вниз. Объясним это явление.

Как отмечалось, вес Р" ш шара в воздухе был уравновешен весом Р" г гири в воздухе, т. е. Р" ш = Р" г. Но если справедлив закон Архимеда, то и на шар, и на гирю в воздухе действуют выталкивающие силы. Поэтому вес шара в воздухе равен Р" ш = Р ш -F ш, а вес гири в воздухе Р" г = Р г -F г, где Р г и Р ш - истинные веса гири и шара, т. е. их веса в пустоте, a F г и F ш - архимедовы выталкивающие силы, действующие соответственно на гирю и шар.

Согласно (5.9), F ш =r в gV ш и F г =r в gV г, где r в - плотность воздуха, V ш - объем шара, V г - объем гири. Так как V ш >>V г, то выталкивающая сила F ш, действующая на шар, значительно больше выталкивающей силы V г, действующей на гирю. Поэтому наблюдаемое в воздухе равновесие шара и гири не означает одинаковости их весов в пустоте. На самом деле истинный вес шара P ш больше истинного веса гири P г. Это сразу обнаруживается, когда из-под колокола насоса откачивают воздух. Весы выходят из равновесия, шар опускается вниз. Таким образом, данный опыт наглядно показывает справедливость закона Архимеда и для газов.

На использовании действия архимедовой силы в газах основано воздухоплавание - полеты дирижаблей, аэростатов и т. п.

На поверхность тела, которое находится в жидкости или газе действуют силы давления. Известно, что давление увеличивается с увеличением глубины погружения. Значит, что силы давления, которые действуют на нижнюю часть тела и направлены вверх больше по модулю, чем силы, которые действуют на верхнюю часть тела и направлены вниз.

Определение и формула силы выталкивания

Определение

Равнодействующую сил давления на тело, которое погружено в жидкость или газ называют выталкивающей силой . Выталкивающая сила может быть больше, чем сила тяжести, которая действует на тело. Силы выталкивания появляются и в том случае,если тело находится в жидкости или газе частично.

Если тело, находящееся в жидкости оставить в покое, то оно тонет, находится в равновесии или всплывает на поверхность. Это зависит от соотношения силы тяжести и выталкивающей силы (F A),действующих на тело. В первом случае (тело тонет) mg>F A . Если mg=F A , то тело находится в равновесии. При mg

Закон Архимеда

На тело, погруженное в жидкость или газ, действует сила выталкивания (сила Архимеда F A), равная весу вытесненной им жидкости или газа. В математическом виде данный закон выглядит как:

где – плотность жидкости (газа), в которую погружено тело, g=9,8 м/с 2 – ускорение свободного падения, V – объем тела (его части), которое находится в жидкости (газе). Сила Архимеда приложена к центру тяжести объема части тела, которая находится в жидкости (газе).

Закон Архимеда можно применять для вычисления плотности однородного тела неправильной формы. При этом тело взвешивают два раза: один раз в воздухе, второй раз, погрузив тело в жидкость, плотность которой известна.

Единицы измерения силы выталкивания

Основной единицей измерения силы Архимеда, как и любой силы в системе СИ является: =Н

В СГС: F A ]=дин

1Н= (кг м)/с 2

Примеры решения задач

Пример

Задание. Какова сила выталкивания, которая действует на куб, погруженный в систему жидкостей. Сосуд наполнен водой, поверх воды налит керосин. Граница раздела жидкостей проходит посередине грани куба. Плотность воды считайте равной 1 =10 3 кг/м 3 , плотность керосина равна 2 =0,81 10 3 кг/м 3 . Сторона куба равна a=0,1 м.

Решение. Сделаем рисунок.

Сила выталкивания, которая действует со стороны воды, на половину куба равна:

Сила выталкивания, которая действует со стороны керосина, на половину куба равна:

Обе силы направлены вверх. Приложены они к разным точкам (центрам масс объемов тел, погруженных в соответствующие жидкости), при суммировании векторы можно перенести в одну точку параллельно самим себе. Получим, результирующая сила выталкивания равна:

Подставим компоненты силы (1.2), (1.3) в выражение (1.1), имеем:

Проведем вычисления:

Ответ. Ответ: F A =8,8 Н

Пример

Задание. Какова плотность камня, если его вес в воздухе 3,2 Н, а вес в воде 1,8 Н.

Решение. Вес камня в воздухе:

где – плотность камня, V – объем камня. Взвешивая камень в воде, получаем вес камня в жидкости, равный.

Выталкивающую силу, или силу Архимеда, можно вычислить. Особенно легко это сделать для тела, стороны которого прямоугольники (прямоугольного параллелепипеда). Например, такую форму имеет брусок.

Поскольку боковые силы давления жидкости можно не учитывать, так как они взаимно уничтожаются (их равнодействующая равна нулю), то рассматриваются только силы давления воды, действующие на нижнюю и верхнюю поверхности. Если тело не полностью погружено в воду, то есть только сила давления воды, действующая снизу. Она единственная, которая создает выталкивающую силу.

Давление жидкости на глубине h определяется формулой:

Сила давления определяется формулой:

Заменив давление во второй формуле на равную ему правую часть из первой формулы, получим:

Это и есть сила давления жидкости, действующая на поверхность тела на определенной глубине. Если тело плавает на поверхности, то эта сила будет выталкивающей силой (силой Архимеда). h здесь определяется высотой подводной части тела. В таком случае формулу можно записать так: F A = ρghS. Тем самым подчеркнув, что речь идет о силе Архимеда.

Произведение высоты (h) погруженной в воду части прямоугольного бруска на площадь его основания (S) - это объем (V) погруженной части этого тела. Действительно, чтобы найти объем параллелепипеда надо перемножить его ширину (a), длину (b) и высоту (h). Произведение ширины на длину есть площадь основания (S). Поэтому в формуле мы можем заменить произведение hS на V:

Теперь обратим внимание на то, что ρ - это плотность жидкости, а V - это объем погруженного тела (или части тела). Но ведь тело, погружаясь в жидкость, вытесняет из нее объем жидкости, равный погруженному телу. То есть, если погрузить в воду тело объемом 10 см 3 , то оно вытеснит 10 см 3 воды. Конечно, этот объем воды скорее всего не выскочит из емкости, заменившись объемом тела. Просто уровень воды в емкости поднимется на 10 см 3 .

Поэтому в формуле F A = ρgV мы можем иметь в виду не объем погруженного тела, а объем вытесненной телом воды.

Вспомним, что произведение плотности (ρ) на объем (V) - это масса тела (m):

В таком случае формулу, определяющую выталкивающую силу, можно записать так:

Но ведь произведение массы тела (m) на ускорение свободного падения (g) есть вес (P) этого тела. Тогда получается такое равенство:

Таким образом, сила Архимеда (или выталкивающая сила) равна по модулю (численному значению) весу жидкости в объеме, равном объему погруженного в нее тела (или его погруженной части) . Это и есть закон Архимеда .

Если тело в виде бруска полностью погружено в воду, то выталкивающую силу для него определяет разность между силой давления воды сверху и силой давления снизу. Сверху на тело давит сила, равная

F верх = ρgh верх S,

F низ = ρgh низ S,

Тогда мы можем записать

F A = ρgh низ S – ρgh верх S = ρgS(h низ - h верх)

h верх – это расстояние от кромки воды до верхней поверхности тела, а h низ - это расстояние от кромки воды до нижней поверхности тела. Их разность есть высота тела. Следовательно,

F A = ρghS, где h - это высота тела.

Получилось то же самое, что и для частично погруженного тела, хотя там h - это высота части тела, находящейся под водой. В том случае уже было доказано, что F A = P. То же самое выполняется и здесь: выталкивающая сила, действующая на тело, равна по модулю весу вытесненной им жидкости, которая равна по объему погруженному телу.

Обратите внимание, что вес тела и вес жидкости одинаковых объемов чаще всего разный, так как у тела и жидкости чаще всего разные плотности. Поэтому нельзя говорить, что выталкивающая сила равна весу тела. Она равна весу жидкости, объемом равному телу. Причем весу по модулю, так как выталкивающая сила направлена вверх, а вес вниз.

Выбор редакции
Незнакомец, советуем тебе читать сказку "Каша из топора" самому и своим деткам, это замечательное произведение созданное нашими предками....

У пословиц и поговорок может быть большое количество значений. А раз так, то они располагают к исследованиям большим и малым. Наше -...

© Зощенко М. М., наследники, 2009© Андреев А. С., иллюстрации, 2011© ООО «Издательство АСТ», 2014* * *Смешные рассказыПоказательный...

Флавий Феодосий II Младший (тж. Малый, Юнейший; 10 апр. 401 г. - † 28 июля 450 г.) - император Восточной Римской империи (Византии) в...
В тревожный и непростой XII век Грузией правила царица Тамара . Царицей эту великую женщину называем мы, русскоговорящие жители планеты....
Житие сщмч. Петра (Зверева), архиепископа ВоронежскогоСвященномученик Петр, архиепископ Воронежский родился 18 февраля 1878 года в Москве...
АПОСТОЛ ИУДА ИСКАРИОТ Апостол Иуда ИскариотСамая трагическая и незаслуженно оскорбленная фигура из окружения Иисуса. Иуда изображён в...
Когнитивная психотерапия в варианте Бека - это структурированное обучение, эксперимент, тренировки в ментальном и поведенческом планах,...
Мир сновидений настолько многогранен, что никогда не знаешь, что же появится в следующем сне. Порой сны бывают устрашающие, приводящие к...