Арифметика прогрессия. Арифметическая и геометрическая прогрессии


Сумма арифметической прогрессии.

Сумма арифметической прогрессии - штука простая. И по смыслу, и по формуле. Но задания по этой теме бывают всякие. От элементарных до вполне солидных.

Сначала разберёмся со смыслом и формулой суммы. А потом и порешаем. В своё удовольствие.) Смысл суммы прост, как мычание. Чтобы найти сумму арифметической прогрессии надо просто аккуратно сложить все её члены. Если этих членов мало, можно складывать безо всяких формул. Но если много, или очень много... сложение напрягает.) В этом случае спасает формула.

Формула суммы выглядит просто:

Разберёмся, что за буковки входят в формулу. Это многое прояснит.

S n - сумма арифметической прогрессии. Результат сложения всех членов, с первого по последний. Это важно. Складываются именно все члены подряд, без пропусков и перескоков. И, именно, начиная с первого. В задачках, типа найти сумму третьего и восьмого членов, или сумму членов с пятого по двадцатый - прямое применение формулы разочарует.)

a 1 - первый член прогрессии. Здесь всё понятно, это просто первое число ряда.

a n - последний член прогрессии. Последнее число ряда. Не очень привычное название, но, в применении к сумме, очень даже годится. Дальше сами увидите.

n - номер последнего члена. Важно понимать, что в формуле этот номер совпадает с количеством складываемых членов.

Определимся с понятием последнего члена a n . Вопрос на засыпку: какой член будет последним, если дана бесконечная арифметическая прогрессия?)

Для уверенного ответа нужно понимать элементарный смысл арифметической прогрессии и... внимательно читать задание!)

В задании на поиск суммы арифметической прогрессии всегда фигурирует (прямо или косвенно) последний член, которым следует ограничиться. Иначе конечной, конкретной суммы просто не существует. Для решения не суть важно, какая задана прогрессия: конечная, или бесконечная. Не суть важно, как она задана: рядом чисел, или формулой n-го члена.

Самое главное - понимать, что формула работает с первого члена прогрессии до члена c номером n. Собственно, полное название формулы выглядит вот так: сумма n первых членов арифметической прогрессии. Количество этих самых первых членов, т.е. n , определяется исключительно заданием. В задании вся эта ценная информация частенько зашифровывается, да... Но ничего, в примерах ниже мы эти секреты пораскрываем.)

Примеры заданий на сумму арифметической прогрессии.

Прежде всего, полезная информация:

Основная сложность в заданиях на сумму арифметической прогрессии заключается в правильном определении элементов формулы.

Эти самые элементы составители заданий шифруют с безграничной фантазией.) Здесь главное - не бояться. Понимая суть элементов, достаточно просто их расшифровать. Разберём подробно несколько примеров. Начнём с задания на основе реального ГИА.

1. Арифметическая прогрессия задана условием: a n = 2n-3,5. Найдите сумму первых 10 её членов.

Хорошее задание. Лёгкое.) Нам для определения суммы по формуле чего надо знать? Первый член a 1 , последний член a n , да номер последнего члена n.

Где взять номер последнего члена n ? Да там же, в условии! Там сказано: найти сумму первых 10 членов. Ну и с каким номером будет последний, десятый член?) Вы не поверите, его номер - десятый!) Стало быть, вместо a n в формулу будем подставлять a 10 , а вместо n - десятку. Повторю, номер последнего члена совпадает с количеством членов.

Осталось определить a 1 и a 10 . Это легко считается по формуле n-го члена, которая дана в условии задачи. Не знаете, как это сделать? Посетите предыдущий урок, без этого - никак.

a 1 = 2·1 - 3,5 = -1,5

a 10 =2·10 - 3,5 =16,5

S n = S 10 .

Мы выяснили значение всех элементов формулы суммы арифметической прогрессии. Остаётся подставить их, да посчитать:

Вот и все дела. Ответ: 75.

Ещё задание на основе ГИА. Чуть посложнее:

2. Дана арифметическая прогрессия (a n), разность которой равна 3,7; a 1 =2,3. Найти сумму первых 15 её членов.

Сразу пишем формулу суммы:

Эта формулка позволяет нам найти значение любого члена по его номеру. Ищем простой подстановкой:

a 15 = 2,3 + (15-1)·3,7 = 54,1

Осталось подставить все элементы в формулу суммы арифметической прогрессии и посчитать ответ:

Ответ: 423.

Кстати, если в формулу суммы вместо a n просто подставим формулу n-го члена, получим:

Приведём подобные, получим новую формулу суммы членов арифметической прогрессии:

Как видим, тут не требуется n-й член a n . В некоторых задачах эта формула здорово выручает, да... Можно эту формулу запомнить. А можно в нужный момент её просто вывести, как здесь. Ведь формулу суммы и формулу n-го члена всяко надо помнить.)

Теперь задание в виде краткой шифровки):

3. Найти сумму всех положительных двузначных чисел, кратных трём.

Во как! Ни тебе первого члена, ни последнего, ни прогрессии вообще... Как жить!?

Придётся думать головой и вытаскивать из условия все элементы суммы арифметической прогрессии. Что такое двузначные числа - знаем. Из двух циферок состоят.) Какое двузначное число будет первым ? 10, надо полагать.) А последнее двузначное число? 99, разумеется! За ним уже трёхзначные пойдут...

Кратные трём... Гм... Это такие числа, которые делятся на три нацело, вот! Десятка не делится на три, 11 не делится... 12... делится! Так, кое-что вырисовывается. Уже можно записать ряд по условию задачи:

12, 15, 18, 21, ... 96, 99.

Будет ли этот ряд арифметической прогрессией? Конечно! Каждый член отличается от предыдущего строго на тройку. Если к члену прибавить 2, или 4, скажем, результат, т.е. новое число, уже не поделится нацело на 3. До кучи можно сразу и разность арифметической прогрессии определить: d = 3. Пригодится!)

Итак, можно смело записать кое-какие параметры прогрессии:

А какой будет номер n последнего члена? Тот, кто думает, что 99 - фатально заблуждается... Номера - они всегда подряд идут, а члены у нас - через тройку перескакивают. Не совпадают они.

Тут два пути решения. Один путь - для сверхтрудолюбивых. Можно расписать прогрессию, весь ряд чисел, и посчитать пальчиком количество членов.) Второй путь - для вдумчивых. Нужно вспомнить формулу n-го члена. Если формулу применить к нашей задаче, получим, что 99 - это тридцатый член прогрессии. Т.е. n = 30.

Смотрим на формулу суммы арифметической прогрессии:

Смотрим, и радуемся.) Мы вытащили из условия задачи всё необходимое для расчёта суммы:

a 1 = 12.

a 30 = 99.

S n = S 30 .

Остаётся элементарная арифметика. Подставляем числа в формулу и считаем:

Ответ: 1665

Ещё один тип популярных задачек:

4. Дана арифметическая прогрессия:

-21,5; -20; -18,5; -17; ...

Найти сумму членов с двадцатого по тридцать четвёртый.

Смотрим на формулу суммы и... огорчаемся.) Формула, напомню, считает сумму с первого члена. А в задаче нужно считать сумму с двадцатого... Не сработает формула.

Можно, конечно, расписать всю прогрессию в ряд, да поскладывать члены с 20 по 34. Но... как-то тупо и долго получается, правда?)

Есть более элегантное решение. Разобьём наш ряд на две части. Первая часть будет с первого члена по девятнадцатый. Вторая часть - с двадцатого по тридцать чётвёртый. Понятно, что если мы посчитаем сумму членов первый части S 1-19 , да сложим с суммой членов второй части S 20-34 , получим сумму прогрессии с первого члена по тридцать четвёртый S 1-34 . Вот так:

S 1-19 + S 20-34 = S 1-34

Отсюда видно, что найти сумму S 20-34 можно простым вычитанием

S 20-34 = S 1-34 - S 1-19

Обе суммы в правой части считаются с первого члена, т.е. к ним вполне применима стандартная формула суммы. Приступаем?

Вытаскиваем из условия задачи парметры прогрессии:

d = 1,5.

a 1 = -21,5.

Для расчёта сумм первых 19 и первых 34 членов нам нужны будут 19-й и 34-й члены. Считаем их по формуле n-го члена, как в задаче 2:

a 19 = -21,5 +(19-1)·1,5 = 5,5

a 34 = -21,5 +(34-1)·1,5 = 28

Остаётся всего ничего. От суммы 34 членов отнять сумму 19 членов:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Ответ: 262,5

Одно важное замечание! В решении этой задачи имеется очень полезная фишка. Вместо прямого расчёта того, что нужно (S 20-34), мы посчитали то, что, казалось бы, не нужно - S 1-19 . А уж потом определили и S 20-34 , отбросив от полного результата ненужное. Такой "финт ушами" частенько спасает в злых задачках.)

В этом уроке мы рассмотрели задачи, для решения которых достаточно понимать смысл суммы арифметической прогрессии. Ну и пару формул знать надо.)

Практический совет:

При решении любой задачи на сумму арифметической прогрессии рекомендую сразу выписывать две главные формулы из этой темы.

Формулу n-го члена:

Эти формулы сразу подскажут, что нужно искать, в каком направлении думать, чтобы решить задачу. Помогает.

А теперь задачи для самостоятельного решения.

5. Найти сумму всех двузначных чисел, которые не делятся нацело на три.

Круто?) Подсказка скрыта в замечании к задаче 4. Ну и задачка 3 поможет.

6. Арифметическая прогрессия задана условием: a 1 =-5,5; a n+1 = a n +0,5. Найдите сумму первых 24 её членов.

Непривычно?) Это рекуррентная формула. Про неё можно прочитать в предыдущем уроке. Не игнорируйте ссылку, такие задачки в ГИА частенько встречаются.

7. Вася накопил к Празднику денег. Целых 4550 рублей! И решил подарить самому любимому человеку (себе) несколько дней счастья). Пожить красиво, ни в чём себе не отказывая. Потратить в первый день 500 рублей, а в каждый последующий день тратить на 50 рублей больше, чем в предыдущий! Пока не кончится запас денег. Сколько дней счастья получилось у Васи?

Сложно?) Поможет дополнительная формула из задачи 2.

Ответы (в беспорядке): 7, 3240, 6.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Кто-то к слову «прогрессия» относится настороженно, как к очень сложному термину из разделов высшей математики. А между тем самая простая арифметическая прогрессия - работа счётчика такси (где они ещё остались). И понять суть (а в математике нет ничего важнее, чем «понять суть») арифметической последовательности не так сложно, разобрав несколько элементарных понятий.

Математическая числовая последовательность

Числовой последовательностью принято именовать какой-либо ряд чисел, каждое из которых имеет свой номер.

а 1 - первый член последовательности;

а 2 - второй член последовательности;

а 7 - седьмой член последовательности;

а n - n-ный член последовательности;

Однако не любой произвольный набор цифр и чисел интересует нас. Наше внимание сосредоточим на числовой последовательности, у которой значение n-ного члена связано с его порядковым номером зависимостью, которую можно чётко сформулировать математически. Иными словами: численное значение n-ного номера является какой-либо функцией от n.

a - значение члена числовой последовательности;

n - его порядковый номер;

f(n) - функция, где порядковый номер в числовой последовательности n является аргументом.

Определение

Арифметической прогрессией принято именовать числовую последовательность, в которой каждый последующий член больше (меньше) предыдущего на одно и то же число. Формула n-ного члена арифметической последовательности выглядит следующим образом:

a n - значение текущего члена арифметической прогрессии;

a n+1 - формула следующего числа;

d - разность (определённое число).

Нетрудно определить, что если разность положительна (d>0), то каждый последующий член рассматриваемого ряда будет больше предыдущего и такая арифметическая прогрессия будет возрастающей.

На представленном ниже графике нетрудно проследить, почему числовая последовательность получила название «возрастающая».

В случаях, когда разность отрицательная (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Значение заданного члена

Иногда бывает необходимо определить значение какого-либо произвольного члена a n арифметической прогрессии. Можно сделать это путём расчёта последовательно значений всех членов арифметической прогрессии, начиная с первого до искомого. Однако такой путь не всегда приемлем, если, например, необходимо отыскать значение пятитысячного или восьмимиллионного члена. Традиционный расчёт сильно затянется по времени. Однако конкретная арифметическая прогрессия может быть исследована с помощью определённых формул. Существует и формула n-ного члена: значение любого члена арифметической прогрессии может быть определено как сумма первого члена прогрессии с разностью прогрессии, умноженной на номер искомого члена, уменьшенный на единицу.

Формула универсальна для возрастающей и убывающей прогрессии.

Пример расчёта значения заданного члена

Решим следующую задачу на нахождение значения n-ного члена арифметической прогрессии.

Условие: имеется арифметическая прогрессия с параметрами:

Первый член последовательности равен 3;

Разность числового ряда равняется 1,2.

Задание: необходимо отыскать значение 214 члена

Решение: для определения значения заданного члена воспользуемся формулой:

а(n) = а1 + d(n-1)

Подставив в выражение данные из условия задачи имеем:

а(214) = а1 + d(n-1)

а(214) = 3 + 1,2 (214-1) = 258,6

Ответ: 214-ый член последовательности раве 258,6.

Преимущества такого способа расчёта очевидны - всё решение занимает не более 2 строчек.

Сумма заданного числа членов

Очень часто в заданном арифметическом ряду требуется определить сумму значений некоторого его отрезка. Для этого также нет необходимости вычислять значения каждого члена и затем суммировать. Такой способ применим, если число членов, сумму которых необходимо найти, невелико. В остальных случаях удобнее воспользоваться следующей формулой.

Сумма членов арифметической прогрессии от 1 до n равна сумме первого и n-ного членов, помноженной на номер члена n и делённой надвое. Если в формуле значение n-ного члена заменить на выражение из предыдущего пункта статьи, получим:

Пример расчёта

Для примера решим задачу со следующими условиями:

Первый член последовательности равен нулю;

Разность равняется 0,5.

В задаче требуется определить сумму членов ряда с 56-го по 101.

Решение. Воспользуемся формулой определения суммы прогрессии:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Вначале определим сумму значений 101 члена прогрессии, подставив в формулу данные их условия нашей задачи:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2 525

Очевидно, для того, чтобы узнать сумму членов прогрессии с 56-го по 101-й, необходимо от S 101 отнять S 55 .

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Таким образом сумма арифметической прогрессии для данного примера:

s 101 - s 55 = 2 525 - 742,5 = 1 782,5

Пример практического применения арифметической прогрессии

В конце статьи вернёмся к примеру арифметической последовательности, приведённому в первом абзаце - таксометр (счётчик автомобиля такси). Рассмотрим такой пример.

Посадка в такси (в которую входит 3 км пробега) стоит 50 рублей. Каждый последующий километр оплачивается из расчёта 22 руб./км. Расстояние поездки 30 км. Рассчитать стоимость поездки.

1. Отбросим первые 3 км, цена которых включена в стоимость посадки.

30 - 3 = 27 км.

2. Дальнейший расчет - не что иное как разбор арифметического числового ряда.

Номер члена - число км пробега (минус первые три).

Значение члена - сумма.

Первый член в данной задаче будет равен a 1 = 50 р.

Разность прогрессии d = 22 р.

интересующее нас число - значение (27+1)-ого члена арифметической прогрессии - показания счётчика в конце 27-го километра - 27,999… = 28 км.

a 28 = 50 + 22 ∙ (28 - 1) = 644

На формулах, описывающих те или иные числовые последовательности, построены расчёты календарных данных на сколь угодно длительный период. В астрономии в геометрической зависимости от расстояния небесного тела до светила находится длина орбиты. Кроме того, различные числовые ряды с успехом применяются в статистике и других прикладных разделах математики.

Другой вид числовой последовательности - геометрическая

Геометрическая прогрессия характеризуется большими, по сравнению с арифметической, темпами изменения. Не случайно в политике, социологии, медицине зачастую, чтобы показать большую скорость распространения того или иного явления, например заболевания при эпидемии, говорят, что процесс развивается в геометрической прогрессии.

N-ный член геометрического числового ряда отличается от предыдущего тем, что он умножается на какое-либо постоянное число - знаменатель, например первый член равен 1, знаменатель соответственно равен 2, тогда:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - значение текущего члена геометрической прогрессии;

b n+1 - формула следующего члена геометрической прогрессии;

q - знаменатель геометрической прогрессии (постоянное число).

Если график арифметической прогрессии представляет собой прямую, то геометрическая рисует несколько иную картину:

Как и в случае с арифметической, геометрическая прогрессия имеет формулу значения произвольного члена. Какой-либо n-ный член геометрической прогрессии равен произведению первого члена на знаменатель прогрессии в степени n уменьшенного на единицу:

Пример. Имеем геометрическую прогрессию с первым членом равным 3 и знаменателем прогрессии, равным 1,5. Найдём 5-й член прогрессии

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Сумма заданного числа членов рассчитывается так же с помощью специальной формулы. Сумма n первых членов геометрической прогрессии равна разности произведения n- ного члена прогрессии на его знаменатель и первого члена прогрессии, делённой на уменьшенный на единицу знаменатель:

Если b n заменить пользуясь рассмотренной выше формулой, значение суммы n первых членов рассматриваемого числового ряда примет вид:

Пример. Геометрическая прогрессия начинается с первого члена, равного 1. Знаменатель задан равным 3. Найдём сумму первых восьми членов.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

Или арифметическая - это вид упорядоченной числовой последовательности, свойства которой изучают в школьном курсе алгебры. В данной статье подробно рассмотрен вопрос, как найти сумму арифметической прогрессии.

Что это за прогрессия?

Прежде чем переходить к рассмотрению вопроса (как найти сумму арифметической прогрессии), стоит понять, о чем пойдет речь.

Любая последовательность действительных чисел, которая получается путем добавления (вычитания) некоторого значения из каждого предыдущего числа, называется алгебраической (арифметической) прогрессией. Это определение в переводе на язык математики принимает форму:

Здесь i - порядковый номер элемента ряда a i . Таким образом, зная всего одно начальное число, можно с легкостью восстановить весь ряд. Параметр d в формуле называется разностью прогрессии.

Можно легко показать, что для рассматриваемого ряда чисел выполняется следующее равенство:

a n = a 1 + d * (n - 1).

То есть для нахождения значения n-го по порядку элемента следует n-1 раз добавить разность d к первому элементу a 1 .

Чему равна сумма арифметической прогрессии: формула

Прежде чем приводить формулу для указанной суммы, стоит рассмотреть простой частный случай. Дана прогрессия натуральных чисел от 1 до 10, необходимо найти их сумму. Поскольку членов в прогрессии немного (10), то можно решить задачу в лоб, то есть просуммировать все элементы по порядку.

S 10 = 1+2+3+4+5+6+7+8+9+10 = 55.

Стоит учесть одну интересную вещь: поскольку каждый член отличается от последующего на одно и то же значение d = 1, то попарное суммирование первого с десятым, второго с девятым и так далее даст одинаковый результат. Действительно:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Как видно, этих сумм всего 5, то есть ровно в два раза меньше, чем число элементов ряда. Тогда умножая число сумм (5) на результат каждой суммы (11), вы придете к полученному в первом примере результату.

Если обобщить эти рассуждения, то можно записать следующее выражение:

S n = n * (a 1 + a n) / 2.

Это выражение показывает, что совсем не обязательно суммировать подряд все элементы, достаточно знать значение первого a 1 и последнего a n , а также общего числа слагаемых n.

Считается, что впервые до этого равенства додумался Гаусс, когда искал решение на заданную его школьным учителем задачу: просуммировать 100 первых целых чисел.

Сумма элементов от m до n: формула

Формула, приведенная в предыдущем пункте, дает ответ на вопрос, как найти сумму арифметической прогрессии (первых элементов), но часто в задачах необходимо просуммировать ряд чисел, стоящих в середине прогрессии. Как это сделать?

Ответить на этот вопрос проще всего, рассматривая следующий пример: пусть необходимо найти сумму членов от m-го до n-го. Для решения задачи следует представить заданный отрезок от m до n прогрессии в виде нового числового ряда. В таком представлении m-й член a m будет первым, а a n станет под номер n-(m-1). В этом случае, применяя стандартную формулу для суммы, получится следующее выражение:

S m n = (n - m + 1) * (a m + a n) / 2.

Пример использования формул

Зная, как найти сумму арифметической прогрессии, стоит рассмотреть простой пример использования приведенных формул.

Ниже дана числовая последовательность, следует найти сумму ее членов, начиная с 5-го и заканчивая 12-м:

Приведенные числа свидетельствуют, что разность d равна 3. Используя выражение для n-го элемента, можно найти значения 5-го и 12-го членов прогрессии. Получается:

a 5 = a 1 + d * 4 = -4 + 3 * 4 = 8;

a 12 = a 1 + d * 11 = -4 + 3 * 11 = 29.

Зная значения чисел, стоящих на концах рассматриваемой алгебраической прогрессии, а также зная, какие номера в ряду они занимают, можно воспользоваться формулой для суммы, полученной в предыдущем пункте. Получится:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

Стоит отметить, что это значение можно было получить иначе: сначала найти сумму первых 12 элементов по стандартной формуле, затем вычислить сумму первых 4 элементов по той же формуле, после этого вычесть из первой суммы вторую.

Если каждому натуральному числу n поставить в соответствие действительное число a n , то говорят, что задано числовую последовательность :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Итак, числовая последовательность — функция натурального аргумента.

Число a 1 называют первым членом последовательности , число a 2 вторым членом последовательности , число a 3 третьим и так далее. Число a n называют n-м членом последовательности , а натуральное число n его номером .

Из двух соседних членов a n и a n +1 последовательности член a n +1 называют последующим (по отношению к a n ), а a n предыдущим (по отношению к a n +1 ).

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена , то есть формулы, которая позволяет определить член последовательности по его номеру.

Например,

последовательность положительных нечётных чисел можно задать формулой

a n = 2n - 1,

а последовательность чередующихся 1 и -1 — формулой

b n = (-1) n +1 .

Последовательность можно определить рекуррентной формулой , то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.

Например,

если a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Если а 1 = 1, а 2 = 1, a n +2 = a n + a n +1 , то первые семь членов числовой последовательности устанавливаем следующим образом:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Последовательности могут быть конечными и бесконечными .

Последовательность называется конечной , если она имеет конечное число членов. Последовательность называется бесконечной , если она имеет бесконечно много членов.

Например,

последовательность двузначных натуральных чисел:

10, 11, 12, 13, . . . , 98, 99

конечная.

Последовательность простых чисел:

2, 3, 5, 7, 11, 13, . . .

бесконечная.

Последовательность называют возрастающей , если каждый её член, начиная со второго, больше чем предыдущий.

Последовательность называют убывающей , если каждый её член, начиная со второго, меньше чем предыдущий.

Например,

2, 4, 6, 8, . . . , 2n , . . . — возрастающая последовательность;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 / n , . . . — убывающая последовательность.

Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью .

Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.

Арифметическая прогрессия

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

a 1 , a 2 , a 3 , . . . , a n , . . .

является арифметической прогрессией, если для любого натурального числа n выполняется условие:

a n +1 = a n + d ,

где d — некоторое число.

Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d .

Число d называют разностью арифметической прогрессии .

Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.

Например,

если a 1 = 3, d = 4 , то первые пять членов последовательности находим следующим образом:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d = 7 + 4 = 11,

a 4 = a 3 + d = 11 + 4 = 15,

a 5 = a 4 + d = 15 + 4 = 19.

Для арифметической прогрессии с первым членом a 1 и разностью d её n

a n = a 1 + (n - 1)d.

Например,

найдём тридцатый член арифметической прогрессии

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n - 2)d,

a n = a 1 + (n - 1)d,

a n +1 = a 1 + nd ,

то, очевидно,

a n =
a n-1 + a n+1
2

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.

Например,

a n = 2n - 7 , является арифметической прогрессией.

Воспользуемся приведённым выше утверждением. Имеем:

a n = 2n - 7,

a n-1 = 2(n - 1) - 7 = 2n - 9,

a n+1 = 2(n + 1) - 7 = 2n - 5.

Следовательно,

a n+1 + a n-1
=
2n - 5 + 2n - 9
= 2n - 7 = a n ,
2
2

Отметим, что n -й член арифметической прогрессии можно найти не толь через a 1 , но и любой предыдущий a k

a n = a k + (n - k )d .

Например,

для a 5 можно записать

a 5 = a 1 + 4d ,

a 5 = a 2 + 3d ,

a 5 = a 3 + 2d ,

a 5 = a 4 + d .

a n = a n-k + kd ,

a n = a n+k - kd ,

то, очевидно,

a n =
a n-k + a n+k
2

любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.

Кроме того, для любой арифметической прогрессии справедливо равенство:

a m + a n = a k + a l ,

m + n = k + l.

Например,

в арифметической прогрессии

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d = 7 + 7·3 = 7 + 21 = 28;

3) a 10 = 28 = (19 + 37)/2 = (a 7 + a 13 )/2;

4) a 2 + a 12 = a 5 + a 9 , так как

a 2 + a 12 = 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n = a 1 + a 2 + a 3 + . . . + a n ,

первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

Отсюда, в частности, следует, что если нужно просуммировать члены

a k , a k +1 , . . . , a n ,

то предыдущая формула сохраняет свою структуру:

Например,

в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Если дана арифметическая прогрессия, то величины a 1 , a n , d , n и S n связаны двумя формулами:

Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Арифметическая прогрессия является монотонной последовательностью. При этом:

  • если d > 0 , то она является возрастающей;
  • если d < 0 , то она является убывающей;
  • если d = 0 , то последовательность будет стационарной.

Геометрическая прогрессия

Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

b 1 , b 2 , b 3 , . . . , b n , . . .

является геометрической прогрессией, если для любого натурального числа n выполняется условие:

b n +1 = b n · q ,

где q ≠ 0 — некоторое число.

Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q .

Число q называют знаменателем геометрической прогрессии .

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

Например,

если b 1 = 1, q = -3 , то первые пять членов последовательности находим следующим образом:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q = -3 · (-3) = 9,

b 4 = b 3 · q = 9 · (-3) = -27,

b 5 = b 4 · q = -27 · (-3) = 81.

b 1 и знаменателем q её n -й член может быть найден по формуле:

b n = b 1 · q n -1 .

Например,

найдём седьмой член геометрической прогрессии 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64 .

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n ,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.

Например,

докажем, что последовательность, которая задаётся формулой b n = -3 · 2 n , является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:

b n = -3 · 2 n ,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Следовательно,

b n 2 = (-3 · 2 n ) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

что и доказывает нужное утверждение.

Отметим, что n -й член геометрической прогрессии можно найти не только через b 1 , но и любой предыдущий член b k , для чего достаточно воспользоваться формулой

b n = b k · q n - k .

Например,

для b 5 можно записать

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3 ,

b 5 = b 3 · q 2 ,

b 5 = b 4 · q .

b n = b k · q n - k ,

b n = b n - k · q k ,

то, очевидно,

b n 2 = b n - k · b n + k

квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.

Кроме того, для любой геометрической прогрессии справедливо равенство:

b m · b n = b k · b l ,

m + n = k + l .

Например,

в геометрической прогрессии

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так как

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n = b 1 + b 2 + b 3 + . . . + b n

первых n членов геометрической прогрессии со знаменателем q 0 вычисляется по формуле:

А при q = 1 — по формуле

S n = nb 1

Заметим, что если нужно просуммировать члены

b k , b k +1 , . . . , b n ,

то используется формула:

S n - S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Например,

в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Если дана геометрическая прогрессия, то величины b 1 , b n , q , n и S n связаны двумя формулами:

Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Для геометрической прогрессии с первым членом b 1 и знаменателем q имеют место следующие свойства монотонности :

  • прогрессия является возрастающей, если выполнено одно из следующих условий:

b 1 > 0 и q > 1;

b 1 < 0 и 0 < q < 1;

  • прогрессия является убывающей, если выполнено одно из следующих условий:

b 1 > 0 и 0 < q < 1;

b 1 < 0 и q > 1.

Если q < 0 , то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

P n = b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n ) n / 2 .

Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1 , то есть

|q | < 1 .

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

1 < q < 0 .

При таком знаменателе последовательность знакопеременная. Например,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n . Это число всегда конечно и выражается формулой

S = b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

7 1 , 7 3 , 7 5 , . . . — геометрическая прогрессия с знаменателем 7 2 .

b 1 , b 2 , b 3 , . . . — геометрическая прогрессия с знаменателем q , то

log a b 1 , log a b 2 , log a b 3 , . . . — арифметическая прогрессия с разностью log a q .

Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6 .

Арифметическая и геометрическая прогрессии

Теоретические сведения

Теоретические сведения

Арифметическая прогрессия

Геометрическая прогрессия

Определение

Арифметической прогрессией a n называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом d (d - разность прогрессий)

Геометрической прогрессией b n называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и тоже число q (q - знаменатель прогрессии)

Рекуррентная формула

Для любого натурального n
a n + 1 = a n + d

Для любого натурального n
b n + 1 = b n ∙ q, b n ≠ 0

Формула n-ого члена

a n = a 1 + d (n – 1)

b n = b 1 ∙ q n - 1 , b n ≠ 0

Характеристическое свойство
Сумма n-первых членов

Примеры заданий с комментариями

Задание 1

В арифметической прогрессии (a n ) a 1 = -6, a 2

По формуле n-ого члена:

a 22 = a 1 + d (22 - 1) = a 1 + 21 d

По условию:

a 1 = -6, значит a 22 = -6 + 21 d .

Необходимо найти разность прогрессий:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = - 48.

Ответ : a 22 = -48.

Задание 2

Найдите пятый член геометрической прогрессии: -3; 6;....

1-й способ (с помощью формулы n -члена)

По формуле n-ого члена геометрической прогрессии:

b 5 = b 1 ∙ q 5 - 1 = b 1 ∙ q 4 .

Так как b 1 = -3,

2-й способ (с помощью рекуррентной формулы)

Так как знаменатель прогрессии равен -2 (q = -2), то:

b 3 = 6 ∙ (-2) = -12;

b 4 = -12 ∙ (-2) = 24;

b 5 = 24 ∙ (-2) = -48.

Ответ : b 5 = -48.

Задание 3

В арифметической прогрессии (a n ) a 74 = 34; a 76 = 156. Найдите семьдесят пятый член этой прогрессии.

Для арифметической прогрессии характеристическое свойство имеет вид .

Из этого следует:

.

Подставим данные в формулу:

Ответ : 95.

Задание 4

В арифметической прогрессии (a n ) a n = 3n - 4. Найдите сумму семнадцати первых членов.

Для нахождения суммы n-первых членов арифметической прогрессии используют две формулы:

.

Какую из них в данном случае удобнее применять?

По условию известна формула n-ого члена исходной прогрессии (a n ) a n = 3n - 4. Можно найти сразу и a 1 , и a 16 без нахождения d . Поэтому воспользуемся первой формулой.

Ответ : 368.

Задание 5

В арифметической прогрессии(a n ) a 1 = -6; a 2 = -8. Найдите двадцать второй член прогрессии.

По формуле n-ого члена:

a 22 = a 1 + d (22 – 1) = a 1 + 21d .

По условию, если a 1 = -6, то a 22 = -6 + 21d . Необходимо найти разность прогрессий:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = -48.

Ответ : a 22 = -48.

Задание 6

Записаны несколько последовательных членов геометрической прогрессии:

Найдите член прогрессии, обозначенный буквой x .

При решении воспользуемся формулой n-го члена b n = b 1 ∙ q n - 1 для геометрических прогрессий. Первый член прогрессии. Чтобы найти знаменатель прогрессии q необходимо взять любой из данных членов прогрессии и разделить на предыдущий. В нашем примере можно взять и разделить на. Получим, что q = 3. Вместо n в формулу подставим 3, так как необходимо найти третий член, заданной геометрической прогрессии.

Подставив найденные значения в формулу, получим:

.

Ответ : .

Задание 7

Из арифметических прогрессий, заданных формулой n-го члена, выберите ту, для которой выполняется условие a 27 > 9:

Так как заданное условие должно выполняться для 27-го члена прогрессии, подставим 27 вместо n в каждую из четырех прогрессий. В 4-й прогрессии получим:

.

Ответ : 4.

Задание 8

В арифметической прогрессии a 1 = 3, d = -1,5. Укажите наибольшее значение n , для которого выполняется неравенство a n > -6.

Выбор редакции
Каждая хозяйка должна научиться правильно варить бульон, чтобы он был прозрачным. Его используют для заливного, супа, холодца и соуса....

Домашние вечеринки настолько вошли в моду у европейцев, что их устраивают едва ли не каждую неделю. Вкусная еда, приятная компания, много...

Когда на улице мороз и снежная зима в самый раз устроить коктейльную домашнюю вечеринку. Разогревающие алкогольные коктейли,...

Характерными блюдами для национальной венгерской кухни считаются те, в которых использовано большое количество молотой паприки, репчатого...
Когда на улице мороз и снежная зима в самый раз устроить коктейльную домашнюю вечеринку. Разогревающие алкогольные коктейли,...
Три дня длилось противостояние главы управы района "Беговой" и владельцев легендарной шашлычной "Антисоветская" . Его итог – демонтаж...
Святой великомученик Никита родился в IV веке в Готии (на восточной стороне реки Дунай в пределах нынешней Румынии и Бессарабии) во...
РЕШЕНИЕ ИМЕНЕМ РОССИЙСКОЙ ФЕДЕРАЦИИ 07 мая 2014 года г. Ефремов Тульская областьЕфремовский районный суд Тульской области в...
Откуда это блюдо получило такое название? Лично я не знаю. Есть еще одно – «мясо по-капитански» и мне оно нравится больше. Сразу...