Лента мебиуса три разделенных кольца. Зачем нужна петля Мебиуса? Применение


July 21st, 2017

Существуют научные знания и явления, которые привносят в обыденность нашей жизни тайну и загадку. Лента Мебиуса относится к ним в полной мере. Современная математика замечательно описывает при помощи формул все ее свойства и особенности.

А вот обычные люди, слабо разбирающиеся в топонимике и других геометрических премудростях, практически ежедневно сталкиваются с предметами, изготовленными по ее образу и подобию, даже не подозревая об этом.Что это такое?Лента Мебиуса, которую также называют петлей, поверхностью или листом, - это объект изучения такой математической дисциплины, как топология, исследующей общие свойства фигур, сохраняющихся при таких непрерывных преобразованиях, как скручивание, растяжение, сжатие, изгибание и других, не связанных с нарушением целостности. Удивительной и неповторимой особенностью такой ленты является то, что он имеет всего одну сторону и край и никак не связаны с ее расположением в пространстве. Лист Мебиуса является топологическим, то есть непрерывным объектом с простейшей односторонней поверхностью с границей в обычном Евклидовом пространстве (3-мерном), где возможно из одной точки такой поверхности, не пересекая края, попасть в любую другую.Кто и когда ее открыл?


Такой непростой объект, как лента Мебиуса, был и открыт довольно необычно.

Прежде всего отметим, что два математика, абсолютно не связанные между собой в исследованиях, открыли ее одновременно - в 1858 году.

Еще одним интересным фактом является то, что оба этих ученых в разное время являлись учениками одного и того же великого математика — Иоганна Карла Фридриха Гаусса. Так, вплоть до 1858 года считалось, что любая поверхность обязана иметь две стороны.

Однако Иоганн Бенедикт Листинг и Август Фердинанд Мебиус открыли геометрический объект, у которого была всего одна сторона, и описывают его свойства. Лента была названа в честь Мебиуса, а вот отцом-основателем «резиновой геометрии» топологи считают Листинга и его труд «Предварительные исследования по топологии».СвойстваЛенте Мебиуса присущи следующие свойства, не меняющиеся при ее сжимании, разрезании вдоль или сминании:


1. Наличие одной стороны. А. Мебиус в своем труде «Об объеме многогранников» описал геометрическую поверхность, названную затем в его честь, обладающую всего одной стороной. Проверить это довольно просто: берем ленту или лист Мебиуса и стараемся закрасить внутреннюю сторону одним цветом, а внешнюю - другим. Не суть важно, в каком месте и направлении было начато окрашивание, вся фигура будет закрашена одним цветом.

2. Непрерывность выражается в том, что любую точку этой геометрической фигуры можно соединить с любой другой ее точкой, не пересекая границы поверхности Мебиуса.

3. Связность, или двухмерность, заключается в том, что при разрезании ленты вдоль, из нее не получится несколько разных фигур, и она остается цельной.

4. В ней отсутствует такое важное свойство, как ориентированность. Это значит, что человек, идущий по этой фигуре, вернется к началу своего пути, но только в зеркальном отражении самого себя. Таким образом, бесконечная лента Мебиуса может привести к вечному путешествию.

5. Особый хроматический номер, показывающий, какое максимально возможное число областей на поверхности Мебиуса, можно создать так, чтобы у любой из них была общая граница со всеми другими. Лента Мебиуса имеет хроматический номер -6, а вот кольцо из бумаги - 5.

Научное использование


Сегодня лист Мебиуса и его свойства широко применяются в науке, служа основой для построения новых гипотез и теорий, проведения исследований и экспериментов, создания новых механизмов и устройств.

Так, существует гипотеза, согласно которой Вселенная — это огромнейшая петля Мебиуса. Косвенно об этом свидетельствует и теория относительности Эйнштейна, согласно которой даже полетевший прямо корабль может вернуться в ту же временную и пространственную точку, откуда стартовал.

Другая теория рассматривает ДНК как часть поверхности Мебиуса, что объясняет сложности с прочтением и расшифровкой генетического кода. Кроме всего прочего, такая структура дает логичное объяснение биологической смерти - замкнутая на самой себе спираль приводит к самоуничтожению объекта.

По мнению физиков, многие оптические законы основываются на свойствах листа Мебиуса. Так, например, зеркальное отражение — это особый перенос во времени и человек видит перед собой своего зеркального двойника.

Реализация на практикеВ различных отраслях промышленности лента Мебиуса применение нашла уже давно. Великий изобретатель Никола Тесла в начале века изобрел резистор Мебиуса, состоящий из двух скрученных на 1800 проводящих поверхностей, который может противостоять потоку электрического тока без создания электромагнитных помех.


На основе исследований поверхности ленты Мебиуса и ее свойств было создано множество устройств и приборов. Ее форму повторяют при создании полосы ленточного конвейера и красящей ленты в печатных устройствах, абразивных ремней для заточки инструментов и автоматической передачи. Это позволяет значительно увеличить срок их службы, так как изнашивание происходит более равномерно.

Не так давно удивительные особенности листа Мебиуса позволили создать пружину, которая, в отличие от обычных, срабатывающих в противоположном направлении, не меняет направление срабатывания. Применяется она в стабилизаторе рулевого привода штурвала, обеспечивая возврат рулевого колеса в исходное положение.

Кроме того, знак лента Мебиуса используется в разнообразных торговых марках и логотипах. Самый известный из них — это международный символ вторичной переработки. Его проставляют на упаковках товаров либо пригодных для последующей переработки, либо сделанных из переработанных ресурсов.

Источник творческого вдохновенияЛента Мебиуса и ее свойства легли в основу творчества многих художников, писателей, скульпторов и кинематографистов. Самый известный художник, использовавший в таких своих работах, как «Лента Мебиуса II (Красные муравьи)», «Всадники» и «Узлы», ленту и ее особенности — Мауриц Корнелис Эшер.


Листы Мебиуса, или, как их еще называют, поверхности минимальной энергии, стали источником вдохновения для математических художников и скульпторов, например, Брента Коллинза или Макса Билла. Самый известный памятник ленте Мебиуса установлен у входа в вашингтонский Музей истории и техники.Русские художники также не остались в стороне от этой темы и создали свои работы. Скульптуры «Лента Мебиуса» установлены в Москве и Екатеринбурге.Литература и топологияНеобычные свойства поверхностей Мебиуса вдохновили многих писателей на создание фантастических и сюрреалистических произведений. Петля Мебиуса играет важную роль в романе Р. Желязны «Двери в песке» и служит как средство перемещения сквозь пространство и время для главного героя романа «Некроскоп» Б. Ламли.


Фигурирует она и в рассказах «Стена темноты» Артура Кларка, «На ленте Мебиуса» М. Клифтона и «Лист Мебиус» А. Дж. Дейча. По мотивам последнего режиссером Густаво Москера был снята фантастическая кинокартина «Мебиус».

Делаем сами, своими руками!

Если вас заинтересовала лента Мебиуса, как сделать ее модель, вам подскажет небольшая инструкция:1. Для изготовления ее модели потребуются:

Лист обычной бумаги;

Ножницы;

Линейка.

2. Отрезаем полосу от листа бумаги так, чтобы ее ширина была в 5-6 раз меньше длины.

3. Полученную бумажную полоску раскладываем на ровной поверхности. Один конец придерживаем рукой, а другой поворачиваем на 1800 так, чтобы полоса перекрутилась и изнанка стала лицевой стороной.

4. Склеиваем концы перекрученной полосы так, как показано на рисунке.


Лента Мебиуса готова.

5. Возьмите ручку или маркер и посередине ленты начните рисовать дорожку. Если вы сделали все правильно, то вернетесь в ту же точку, откуда начали чертить линию.


Для того чтобы получить наглядное подтверждение тому, что лента Мебиуса — односторонний объект, карандашом или ручкой попробуйте закрасить какую-либо ее сторону. Через некоторое время вы увидите, что закрасили ее полностью .

Источник econet.ru

Главной особенностью ленты Мебиуса является то, что у нее всего одна сторона. Это чудесное свойство послужило поводом для сюжетов множества фантастических рассказов. Один из них описывал случай, произошедший в Нью-Йоркском метро, где во времени целый поезд, который отправился в путь, замкнутый в ленту Мебиуса. В рассказе другого писателя Артура Кларка «Стена Мрака» главный герой совершает путешествие по планете, которая изогнута в виде ленты Мебиуса.

Помимо фантастических рассказов, лента Мебиуса встречается в различных направлениях науки и искусства. Этот вдохновлял художников и скульпторов на создание удивительных творений. Одним из художников, особенно любивших его и посвятивших этому математическому объекту несколько литографий, был Эшер. На одной из них изображены муравьи, ползающие по поверхности ленты Мебиуса.

Лента Мебиуса применяется во многих изобретениях, появившихся в результате тщательного изучения свойств односторонней поверхности. Ее форму повторяют абразивные ремни для заточки инструмента, ременная передача, красящая лента в печатающих устройствах.

Магнитофонная лента, которая расположена в кассете как лента Мебиуса, будет проигрываться в 2 раза дольше. Несколько десятилетий назад необычной нашли новое – она превратилась в удивительную пружину. Как известно, обычная взведенная пружина всегда срабатывает в противоположном направлении. Использование открытия Мебиуса позволило создать пружину, не меняющую направления срабатывания. Подобный механизм находит свое применение и в устройстве стабилизатора штурвала рулевого привода, обеспечивая возврат в исходное положение рулевого колеса. Это важно в случае, когда отсутствует обратная связь между управляемыми элементами и рулем.

Форма ленты Мебиуса использовалась и в устройстве ленточного конвейера. Это позволяло работать ему намного дольше, так как в этом случае вся поверхность ленты изнашивалась равномерно.

Существует гипотеза о том, что спираль ДНК также имеет фрагмент ленты Мебиуса, в связи с чем генетический код сложен для восприятия и расшифровки. Кроме того, подобная структура логично объясняет причину биологической – замыкающаяся сама на себя спираль приводит к самоуничтожению.

Ученые-физики утверждают, что в основе всех оптических законов лежит принцип ленты Мебиуса. К примеру, отражение в зеркале является своеобразным переносом во времени, так как человек видит своего зеркального двойника перед собой. Математики сравнивают ленту Мебиуса со знаком бесконечности.

Философы и астрономы, историки и психологи – все они применяют в своих гипотезах небезызвестную ленту Мебиуса. Например, Альберт Эйнштейн считал, что замкнута в виде кольца, подобно ленте Мебиуса, а философами строятся целые теории, основанные на удивительных свойствах этого математического объекта.

Лента Мёбиуса (петля́ Мёбиуса, лист Мёбиуса) — простая с виду фигура, но математик сказал бы, что это двумерная поверхность с удивительными свойствами: у неё только одна сторона и один край, в отличие от обычного кольца, которое можно свернуть из той же полоски, что и ленту Мёбиуса, но у него будет две стороны и два края. В этом легко убедиться, если нарисовать линию посередине ленты, не отрывая карандаш от бумаги, пока не вернётесь в исходную точку. Удивительно, но факт: за счёт полуоборота полоски её верхний и нижний края объединились в одну непрерывную линию, а две стороны превратились в единое целое и стали одной стороной. И вот результат: попасть из одной точки ленты Мёбиуса в любую другую можно, не переходя через край.

Бег по ленте Мёбиуса

Для стороннего наблюдателя путешествие по ленте Мёбиуса представляет собой «бег по кругу», полный неожиданностей. Его наглядно изобразил голландский художник-график Мауриц Эшер (1898—1972). На картине «Лента Мёбиуса II» в роли бегущих — муравьи. Проследив за их движением, можно сделать интересное открытие. Совершив один оборот по ленте, каждый муравей окажется в исходной точке, но уже в положении антипода, — зрительно он будет «по ту сторону» ленты вниз головой. А что произойдёт с двумерным существом, движущимся по ленте Мёбиуса? Обойдя поверхность, оно превратится в своё зеркальное отражение (это легко представить, если считать ленту прозрачной). Чтобы стать самим собой, двумерному существу придётся сделать ещё один круг. Вот и муравью нужно дважды пройти по ленте Мёбиуса, чтобы вернуться в начальное положение.

Научный курьез или полезное открытие

Ленту Мёбиуса часто называют математическим курьёзом. Да и само её появление приписывают случаю. По легенде, ленту придумал один немецкий учёный, когда увидел на горничной неправильно повязанный шейный платок. Это был, известный математик и астроном, ученик Карла Фридриха Гаусса. Одностороннюю поверхность с единственным краем он описал ещё в 1858 году, но статья не была опубликована при его жизни. В том же году независимо от Мёбиуса аналогичное открытие сделал Иоганн Листинг, ещё один ученик Гаусса.

Ленту всё же назвали в честь Мёбиуса. Она стала одним из первых объектов топологии — науки, изучающей наиболее общие свойства фигур, а именно такие, какие сохраняются при непрерывных (без разрезов и склеек) преобразованиях: растяжении, сдавливании, изгибании, скручивании и пр. Эти преобразования напоминают деформации фигур из резины, поэтому топологию иначе называют «резиновой геометрией». Отдельные топологические задачи решал ещё в XVIII веке Леонард Эйлер. Начало новой области математики положила работа Листинга «Предварительные исследования по топологии» (1847) — первый систематический труд по этой науке. Он же придумал термин «топология» (от греческих слов τόπος — место и λόγος — учение).

Ленту Мёбиуса можно было бы считать научным курьёзом, очередной причудой математиков, если бы она не нашла практического применения и не вдохновляла людей искусства. Её не раз изображали художники, ей ставили памятники скульпторы и посвящали свои творения писатели. Эта необычная поверхность приглянулась архитекторам, дизайнерам, ювелирам и даже изготовителям одежды и мебели. На неё обратили внимание изобретатели, конструкторы, инженеры (например, ещё в 1920-е годы были запатентованы аудио- и киноплёнки в форме ленты Мёбиуса, позволяющие удвоить продолжительность записи). Но чаще других с этой лентой имеют дело фокусники: их привлекают необычные свойства, проявляющиеся при её разрезании.Так, если разрезать ленту Мёбиуса по средней линии, она не распадётся на две части, как можно ожидать. Из неё получится более узкая и длинная двусторонняя лента, перекрученная дважды (подобную форму имеет конструкция аттракциона «Американские горки»). А вот «кулинарный фокус»: пирожные в виде ленты Мёбиуса покажутся вкуснее обычных, ведь на них можно намазать в два раза больше крема! Кроме того, есть интересные архитектурные проекты зданий, выполненные «в стиле ленты Мёбиуса». Пока они существуют только на бумаге, но, хочется верить, непременно будут реализованы.

«Двусмысленное» положение

Своими свойствами лента Мёбиуса в самом деле напоминает объект из Зазеркалья. Да и сама она, будучи асимметричной фигурой, имеет зеркального двойника. Отправим прогуляться вдоль ленты отпечаток правой ступни и вскоре обнаружим, что домой возвратится отпечаток левой ступни. Забавно, правда? И когда только «правое» успело стать «левым»? «Вмонтируем» в ленту двумерные часы и заставим их совершить по ней полный оборот. Взглянув на часы, мы увидим, что стрелки на циферблате движутся с той же скоростью, но в обратную сторону! И какое же из двух направлений движения правильное?

Пока вы думаете над ответом, замечу, что математик предложил бы изящный выход даже из этого «двусмысленного» положения. Нужно, чтобы, во-первых, часы всегда показывали одно и то же время, а во-вторых, стрелки на циферблате были в положении, которое сохранилось бы при зеркальном отражении, например стояли вертикально, образуя развёрнутый угол.

Ну что, проверим ответ? На самом деле на ленте Мёбиуса нельзя установить определённое направление вращения. Одно и то же движение можно воспринимать и как поворот по часовой стрелке, и как поворот в противоположном направлении. Когда произвольно выбранная на ленте Мёбиуса точка обходит её, одно направление непрерывно переходит в другое. При этом «правое» неуловимо сменяется «левым». Двумерное существо никаких изменений в себе не заметит. Зато их увидят другие такие же существа и, конечно, мы, наблюдающие за происходящим из другого измерения. Вот такая она непредсказуемая, односторонняя поверхность Мёбиуса.

Представим себе поверхность и сидящего на ней муравья. Удастся ли муравью доползти до обратной стороны поверхности - образно говоря, до её изнанки, - не перелезая через край? Конечно же нет!

Первый пример односторонней поверхности, в любое место которой может доползти муравей, не перелезая через край, привел Мёбиус в 1858г.

М.Эшер "Лист Мёбиуса II" «Переход» через ленту Мебиусав другое измерение

Август Фердинанд Мёбиус (1790-1868) - ученик «короля» математиков Гаусса. Мёбиус был первоначально астрономом, как Гаусс и многие другие, кому математика обязана своим развитием. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. И Мёбиус стал одним из крупнейших геометров XIX века.

В возрасте 68 лет Мёбиусу удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей, одна из которых - лист Мёбиуса (или лента). Мёбиус придумал ленту, когда наблюдал за горничной, неправильно одевшей на шею свой платок.

М.Эшер "Лист Мёбиуса"

Изготовим лист Мёбиуса: возьмите бумажную полоску-длинный узкий прямоугольник АВСD (удобные размеры: длина 30 см, ширина 3 см). Перекрутив один конец полоски на 180º, склейте из нее кольцо (точки А и С, В и D).Модель готова.

Модель ленты Мебиуса может быть легко создана из полоски бумаги, повернув один из концов полоски вполоборота и соединив его с другим концом в замкнутую фигуру. Если начать рисовать карандашом линию на поверхности ленты, то линия уйдет вглубь фигуры и пройдет под начальной точкой линии, как бы уйдя на "другую сторону" ленты. Если продолжать линию, то она вернется в начальную точку. При этом длина нарисованной линии будет вдвое больше длины полоски бумаги. Этот пример показывает, что у ленты Мебиуса лишь одна сторона и одна граница.

В Евклидовом пространстве, фактически, существует два типа ленты Мебиуса, развернутой вполоборота: одна - развернутая по часовой стрелке, другая - против часовой стрелки.

Лист Мебиуса преподнесет вам сюрприз, если вы попытаетесь его разрезать. Разрежьте лист по центральной линии. Что у вас получилось? Вместо того, чтобы развалиться на два куска, лента разворачивается в длинную связанную замкнутую полоску. Полученную после первого разреза ленту снова разрежьте по центральной линии. Перед последним сжатием ножниц попробуйте угадать, что будет?

Чтобы получить ленту Мебиуса, мы переворачивали полоску бумаги на 180º, на пол оборота. Теперь полоску скрутите на 360º, полный оборот. Склейте, затем разрежьте её по центральной линии. Какой получиться результат, трудно предугадать.

А теперь попробуем изготовить такую модель: в полосе АВСD прорезать щель и продеть сквозь неё один конец. Повернув, на пол оборота, склейте, как показано на рисунке.

А теперь продолжите разрез вдоль всей ленты. Что у вас получилось?

Таинственный и знаменитый лист мебиуса, появившийся в 1858 году, волновал художников и скульпторов. Много рисунков с изображениями листа Мебиуса оставил известный голландский художник Морис Эшер (см. статью ).

Целую серию вариантов листа Мебиуса можно встретить в скульптуре.

Роман с камнем. Праща Мебиуса. С. Карпиков Памятник ленте Мёбиуса в Москве. А. Налич


Парадокс и совершество. А. Эткало Геометрические скульптуры Мерит Расмуссен

г. Минск. Скверик около Центральной Научной библиотеки имени Якуба Коласа.

Архитетурные решения с использованием идеи ленты Мебиуса:



Невероятный проект новой библиотеки в Астане, Казахстан

Настольные композиции:




Даже есть мебель в виде ленты Мёбиуса


Ювелирные украшения в виде ленты Мёбиуса:




Есть гипотеза, что спираль ДНК человека сама по себе тоже является фрагментом ленты Мебиуса.


Международный символ переработки представляет собой Лист Мёбиуса .

Лист Мёбиуса также постоянно встречается в научной фантастике , например в рассказе Артура Кларка «Стена Темноты». Иногда научно-фантастические рассказы (вслед за физиками-теоретиками) предполагают, что наша Вселенная может быть некоторым обобщенным листом Мёбиуса. Также кольцо Мёбиуса постоянно упоминается в произведениях уральского писателя Владислава Крапивина, цикл «В глубине Великого Кристалла» (напр. «Застава на Якорном Поле. Повесть»). В рассказе «Лист Мёбиуса» автора А. Дж. Дейча, бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда. По мотивам рассказа был снят фантастический фильм «Мёбиус» режиссёра Густаво Москера. Также идея ленты Мебиуса используется в рассказе М. Клифтона «На ленте Мебиуса». С лентой Мёбиуса сравнивается течение романа современного русского писателя Алексея А. Шепелёва «Echo» (СПб.: Амфора, 2003). Из аннотации к книге: «„Echo“ — литературная аналогия кольца Мёбиуса: две сюжетные линии — „мальчиков“ и „девочек“ — переплетаются, перетекают друг в друга, но не пересекаются».

Александр Пославский

Артемий Бабий

Это небольшой очерк о малоизвестных сюрпризах, которые встречаются при изучении геометрии ленты Мёбиуса.

В литературе встречается несколько названий: проективная плоскость, односторонняя поверхность, лента Мёбиуса, петля Мёбиуса, кольцо Мёбиуса. По укоренившейся у меня привычке в дальнейшем я буду называть предмет нашего изучения кольцом Мёбиуса.

Коротко об общеизвестных сюрпризах кольца Мёбиуса . Это необходимо для понимания того, о чем будет рассказано далее.

  • Если разрезать кольцо Мёбиуса вдоль по средней линии, то в итоге получится кольцо с двойным полуоборотом. Такое кольцо называют *Афганской лентой* и оно является уже двусхторонней поверхностью с двумя краями (кромками).
  • Если разрезать кольцо Мёбиуса вдоль края, отступив на 1/3 его ширины, то в итоге получатся два кольца разных размеров: меньшее - кольцо Мёбиуса ( односторонняя поверхность) и большее - *Афганская лента * (двусторонняя поверхность). Эти кольца сцеплены друг с другом.

А сейчас о новых сюрпризах. Они малоизвестны для широкой публики. А самые любознательные читатели могут повторить нижеописанные опыты. Автор очерка не являеется профессиональным математиком-топологом, всё придумал самостоятельно, без посторонней помощи. Поэтому результаты опытов и идеи, высказанные в этом очерке, предлагаются для обсуждения с его автором.

Сюрприз №1

Сначала я попробовал склеить кольцо Мёбиуса не из одной, а из двух полосок бумаги, предварительно уложив их в стопку (Фото 1). Получилось нечто похожее на настоящее кольцо Мёбиуса (Фото2):

Почему “нечто похожее”? Потому что, когда я растянул это кольцо, оказалось, что в результате склейки получилась “ (Фото 3).

И в чем тут сюрприз? А в том, что при растягивании исходного кольца, не нарушалась его целостность. Это значит, что достаточно просто складывается в обратном порядке в исходное кольцо (псевдокольцо) Мёбиуса (Фото 4).

Сейчас время вспомнить, что “афганская лента” получается при разрезании настоящего кольца Мёбиуса по средней линии. Так вот, полученная при разрезании, так же просто складывается в псевдокольцо Мёбиуса . Т.е., разрезав кольцо Мёбиуса (далее - кМ ) по средней линии и получив “афганскую ленту” (а.л.” ) , можно уже полученную а.л. собрать в псевдокольцо Мёбиуса (далее - ПкМ ). Вы можете просто склеить “а.л.” и сложить ее в ПкМ . Проверено на практике.

Сюрприз №2

Этот сюрприз является продолжением сюрприза 1 . Я склеил уже три бумажные полоски по форме кМ , предварительно уложив их в стопку (Фото 5 и 6).

Получился некий “бутерброд” в форме кМ (Фото 7) . Если растянуть этот “бутерброд” , то он разложится на два кольца: меньшее - это кМ и большее - это “а.л.” , сцепленные друг с другом (Фото 8).

Но такой же результат получается при разрезании кМ по 1 / 3 его ширины! Как и в первом случае, эти два кольца возможно собрать в первоначальное состояние “бутерброда” . Сначала “а.л.” укладывается в ПкМ (Фото 9) , а затем кМ помещается в середину ПкМ (Фото 10). Проверено на практике.

Удивительно, но, разрезав уже “бутерброд” по 1 / 3 ширины, можно собрать новый, более сложный “бутерброд” . Теоретически такое деление “бутербродов” и их собирание можно продолжать... ну очень много раз. В итоге получится многослойный “бутерброд” , состоящий из многих слоёв “афганских лент” и одного кольца Мёбиус а , расположенного в середине “бутерброда” .

Для более образного представления многослойного (бутербродного) строения псевдокольца Мёбиуса предлагаю два рисунка из серии “математики шутят”:

На примере “бутерброда” (Фото 7,10) можно легко и зримо понять ещё одно свойство односторонней поверхности (проективной плоскости): нельзя создать две , параллельные друг к другу, однносторонние поверхности (во всяком случае в нашем трёхмерном, эвклидовом, пространстве). Одна из них обязательно получится двухсторонней.

Здесь я сделаю небольшое отступление. В Интернете я встретил описание эксперимента с кольцом Мёбиуса . Выглядел он так: на полимерную плёнку в форме кМ наносился металлический слой. Над полученным образцом проводились различные действия, считая что проводятся опыты над кМ . Строго говоря, опыты проводились над вышеописанным “бутербродом” , где рабочий металлический слой являлся “афганской лентой” , а кольцом Мёбиуса была несущая полимерная плёнка.

Возвращаясь к теме, хочу заметить, что я тоже хотел поэкспериментировать с кМ . Но меня не устраивала несовершенная форма кМ , полученная из прямоугольных полосок. Эта “прямоугольная” конструкция имеет, как минимум, три зоны деформации, которые четко проявляются при уплощении кМ . Поэтому я посчитал, что кМ , собранные на основе S-образных полосок, более технологичны в работе(Фото 11 и 12).

Чтобы получить кМ изS- образной полоски достаточно состыковать концы полоски и склеить их. Причем, в зависимости от того в какую сторону вы будете перегибать полоску, будет получаться лево- или правозакрученный вариант кМ . Так же просто получается и вышеописанный “бутерброд” : делается стопка из 3 S -образных полосок, сводятся их концы и поочередно склеиваются.

Опыты с разрезанием кольца Мёбиуса и собиранием “бутербродов” с этим вариантом более наглядны и сборка получается очень легко.

“Бутерброд” , полученный из трех полосок может послужить моделью для создания конденсатора в форме кМ . Только надо понимать, что в начале необходимо создать кМ из металлической фольги (внутренняя пластина-электрод), а уже на него наносить слои диэлектрика и металлической плёнки (внешняя пластина-электрод). Хотя здесь возможны варианты не с кМ , а с ПкМ и это потребует несколько иного подхода.

Я не знаю, будет ли такая конструкция конденсатора иметь преимущества перед традиционной, но считаю, что она будет интересна для тех, кто занимается торсионными полями. Почему? Это уже тема для дискуссии с автором очерка.

Сюрприз №3

Продолжим. Несмотря на полученный результат, у меня осталась неудовлетворенность несовершенством формы полученного таким способом кМ . Размышляя над этой проблемой, я вспомнил, что кМ относится к торовым поверхностям. Так как у меня с пространственным воображением напряг и мне необходимо всё увидеть глазами и потрогать руками, то я взял кольцо Мёбиуса и оклеил его бумажными кольцами. Получилась вот такая конструкция (Фото 13).

И где здесь обещанный сюрприз? Рассматривая полученный “тор” , я открыл (заостряю - для себя; возможно всё выше- и нижеописанное давно известно читателям этого опуса), что кольцо Мёбиуса не делит внутренний объём тора на две изолированные друг от друга полости. Другими словами: из любой точки, находящейся внутри тора со встроенным в него кМ , можно попасть в любую другую точку внутри, не пересекая плоскость кМ и поверхность тора.

Для наглядности представим себе тор в виде спасательного резинового круга внутри которого находится перегородка в виде кМ . Давление воздуха внутри круга с перегородкой в форме кМ будет распределятся равномерно по всему объёму независимо от того, где будет располагаться ниппель. Кстати, фото 13 очень наглядно моделирует форму магнитного поля вокруг продольной катушки Мёбиуса .

Теоретически принцип построения идеального торового кольца Мёби уса достаточно прост, но практическое исполнение модели торового кМ сопряжено с определёнными техническими трудностями.

Для практического изготовления торовых кМ более всего подходит распечатка на 3-D принтере.

Итак, сюрпризы продолжаются

Сейчас наступило время поговорить о таком замечательном геометрическом теле как ТОР.

Как образуется открытый ТОР ? Правильно, открытый ТОР образуется при вращении торообразующей окружности вокруг оси, находящейся вне этой окружности и имеет вот такой вид (Фото14).

Еще различают пиковый ТОР . Это когда большая ось вращения является касательной к торообразующей окружности. По-простому - бублик без дырки. А также закрытый (осевой) ТОР , когда ось вращения пересекает торообразующую окружность. Хороший пример - округлое яблоко.

Для того, чтобы получить кМ в ТОР е, обозначим в торообразующем круге диаметр (два радиус-вектора). А сейчас заставим торообразующий круг вращаться не только вокруг внешней оси, а одновременно и вокруг внутренней оси ТОР а. За полный оборот вокруг внешней оси круг должен одновременно повернуться на полоборота вокруг внутренней оси. Тогда диаметр (два радиус-вектора) опишет плоскость в виде кМ (Фото 15) .

Но это кМ получено в воображаемом опыте. А как же получить его в реале, не имея в наличии 3-D принтер? Вы можете придумать свой способ, отличный от моего. Я же поступил следующим образом. На поверхности открытого ТОР а (из детской пирамидки) нарисовал траекторию движения радиус-векторов (Фото 16) . Затем взял латунную проволоку, аккуратно обогнул её вокруг ТОР а по этой траектории и получил две половинки края (кромки) торового кМ (Фото 17).

Затем соединил их с помощью двух трубочек, а пространство между ветками полученной петли заполнил отрезками изоленты (Фото 18 и 19).

Кольцо Мёбиуса в ТОР е можно получить и с помощью одного радиус-вектора. При этом он должен одновременно сделать два оборота вокруг внешней оси и полный оборот вокруг внутренней оси. И здесь становятся понятными две вещи: первое - кМ имеет ось симметрии (или среднюю линию) и второе - почему, если разрезать кМ по средней линии, получается кольцо с двойным полуоборотом (*Афг aнская лента* ). Просто представьте себе, что нарисует единичный радиус-вектор при первом обороте вокруг внешней оси, и что при втором.

Внимательный читатель, склеивая кМ и затем разрезая его по средней линии, мог заметить что при этом ножницы совершают один оборот. Если же резать кМ по 1 / 3 ширины, то ножницы совершают уже два оборота.

КМ сохраняет свойства односторонней поверхности и при большем количестве полуоборотов. Главное условие - количество полуоборотов должно быть нечетным.

Такой лист Мёбиуса или кольцо Мёбиуса , как кому нравится, я назвал двухвекторным. Зачем? А затем, что такое кольцо строится двумя радиус-векторами. Ну и что? А то, что...

Сюрприз №4

В торе можна создавать трёх-, четырёх-, ...,N -векторные кольца Мёбиуса . Взгляните на Фото 20. Оно иллюстрирует принцип создания трехвекторного кольца Мёбиуса.

В торообразующей окружности показаны три радиус-вектора - А, В, С . Вращая эту окружность вокруг внешней оси и одновременно закручивая её вокруг внутренней так, чтобы при завершении оборота вектор А состыковался с вектором В (соотвтственно вектор В к С , а С к А ), радиус-векторы опишут (создадут) одностороннюю поверхность в виде трехвекторного (трёхлепесткового) кольца Мёбиуса .

Это универсальный метод получения N-векторных односторонних поверхностей и они будут обладать всеми свойствами обычного кМ.

При таком подходе к построению торовых кМ особое значение приобретает средняя линия (по другому - линия сопряжения). В этом случае линия сопряжения совпадает с внутренней осью тора. Если, к примеру, 3-хвекторный кМ расшить по линии сопряжения, то мы получим вариант “афганской ленты” в тройной петле:

Трёхвекторное кМ , созданное по даной схеме, можно обозначить в виде дроби 1 / 3 , где в знаменателе указывается число векторов, а сама дробь указывает на какой угол закручиваестся каждый вектор при полном обороте.

Я назвал эту дробь индексом км . Например, если я буду говорить о кМ с индексом км = 1 / 4, то это означает, что речь идёт о четырёхвекторном кМ с закрутом в 1 / 4 оборота (умножив на 360 0 , получим результат в градусах) или в 90 0 . Индекс км ,выраженный в градусах - это базовый угол закрута. При этом надо помнить, что индекс км не может принимать значение целого числа .

Приняв во внимание, что кМ может закручиваться по левому или правому винту, я обозначил левый винт знаком ”-“ , а правый винт - знаком “+” . Тогда полная запись индекса км будет выглядеть на примере так: индекс км = + 1 / 4 . Значит речь будет идти о четырехвекторном кМ с закрутом в 1 / 4 оборота(базовый угол закрута - 90 0 ) и правым винтом.

Индекс км становится очень информативным показателем, помогающим достаточно быстро разобраться в огромном семействе многовекторных кМ и их различных сочетаниях.

Я не ставил перед собой задачу описывать и систематизировать всё многообразие семейства торовых кМ и их взаимосочетаний. Остановлюсь только на нескольких осбенностях, которые необходимо учитывать при конструировании девайсов с геометрией кМ .

1. Если индекс км имеет общее кратное для числителя и знаменателя, то при моделировании получается система из нескольких взаимопересекающихся кМ (от 2-х и более). Рассмотрим примеры 6 -тивекторного построения.

Индекс км =+ 2 / 6 , где общее кратное для данной дроби равно 2 . Это означает, что при моделировании получится система из 2-х трехвекторных кМ с базовым углом закрута в 120 0 :

Индекс км =+ 3 / 6 , где общее кратное равно 3 . При моделировании получается система из 3-х двухвекторных кМ с базовым углом в 180 0 :

2. Если индекс км имеет вид 1 / 4 , 1 / 6 , 1 / 8 … 1 / 2 N или 3 / 4 , 5 / 4 , 5 / 6 , 7 / 6 … 2 N±1 / 2N (где N - любое натуральное число, начиная с числа 2 ), то при моделировании получается самопересекающееся кольцо Мёбиуса - от однократного самопересечения до многократного. При этом односторонность такого кМ сохраняется в любом случае. Приведу несколько примеров, подтверждающих данное утверждение:

Выбор редакции
Черехапа редко балует нас промокодами. В июле наконец-то вышел новый купон на 2019 год. Хотите немного сэкономить на страховке для...

Спор можно открыть не раньше чем через 10 дней, после того как продавец отправит товар и до того как Вы подтвердите получение товара, но...

Рано или поздно, каждый покупатель сайта Алиэкспресс сталкивается с ситуацией, когда заказанный товар не приходит. Это может случится из...

12 января 2010 года в 16 часов 53 минуты крупнейшее за последние 200 лет землетрясение магнитудой 7 баллов в считанные минуты погубило,...
Незнакомец, советуем тебе читать сказку "Каша из топора" самому и своим деткам, это замечательное произведение созданное нашими предками....
У пословиц и поговорок может быть большое количество значений. А раз так, то они располагают к исследованиям большим и малым. Наше -...
© Зощенко М. М., наследники, 2009© Андреев А. С., иллюстрации, 2011© ООО «Издательство АСТ», 2014* * *Смешные рассказыПоказательный...
Флавий Феодосий II Младший (тж. Малый, Юнейший; 10 апр. 401 г. - † 28 июля 450 г.) - император Восточной Римской империи (Византии) в...
В тревожный и непростой XII век Грузией правила царица Тамара . Царицей эту великую женщину называем мы, русскоговорящие жители планеты....